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1 Partial Differential Equations

1.1 Distributions

Reference: (Oh 5). Basic definitions, basic operations, convolutions, fundamental solutions

1.1.1 Basic Definitions

Distributions are linear continuous functionals on the space of smooth compactly supported
functions.

Definition 1.1 (Test Functions). Let U c R™ be an open set. ¢ is a test function on U
if it is smooth with compact support, and its support is contained in U. The space of such

functions is denoted D(U) or C3*(U)

A basic example of a test function is 1j,<; exp(—=(1-|z|)~!). If we normalize this and call
it p(x), we can get more test functions via convolution.

Proposition 1.1 (Density of Test Functions in C* functions). If f € C*(R"), ;5 =
5-dp(8-1a), then letting fs = f * @s:

1. fs are smooth
2. 0%fs converges uniformly on every compact set to 0“f for |a|<k as d -0
3. if f has compact support, then fs has compact support.

Proof.

1. fxps(x) = [ f(y)ps(z —y)dy. The integrand is in L} . so we can bring derivatives
inside the integral which fall on 5.

2. o5+ f=f=[s(y)(f(x-y)-f(z))dy. Make § small, use continuity to get this integral
small. Uniform bounds come from this (easier to see with a change of variables).
Derivative bound comes the exact same way.

3. this follows from supp(f * g) c supp f +suppg
]

Definition 1.2 (Distribution). A distribution u on R™ is a linear functional on Cg°(R")
that is continuous with respect to the (very strong) topology on C§°:

Pn = @ <= SUPP P, SUPP Y © K Ceompact R™ and [0%(pn = @) | ey > 0 V a e N"

the space of distributions is denoted D'(R™)

Proposition 1.2 (Alternate Distribution Definition based on Order). A linear func-
tional w on Cg° s a distribution if and only if for all compact K c R"™, there exists Cx and
N such that for all ¢ € C§° with support in K, then:

lu(p)| < Ck ||S0H03V(K)

where ”SOHCéV(K) = Xlaj<N SUPgex 0%l



1.1 Distributions

Proof. The backwards definition is trivial, the backwards is a proof by contradiction, which
is pretty easy. [

Definition 1.3 (Order of a Distribution). If N in the above proposition is uniform and
mainimal, then we say u is a distribution of order N.

Definition 1.4 (Support of a Distribution). The support of a distribution u, denoted
suppu 18 the compliment of the largest open set where u vanishes®

We could we also define this as all = € R™ such that for all € > 0, there exists ¢ € C° with
supp ¢ ¢ B:(x) and u(y) # 0 Note that support is a closed set.

1.1.2 Basic Operations

1. Adjoint: if A, A : CP(R*) — C(R") is such that [ Auvdx = [uA'v, then for
u € D'(R™), define Au(p) =u(A'p)

2. multiplication by smooth function if f € C* u e D'(R") define (fu)(p) = u(fp)
3. Differentiation: (9,,u)(y) = —u(0,,¢)

4. Convolution with compactly supported smooth function f e C§°, define (f *

w)(¢) =u(f f(y-x)e(y)dy)

Convolution with C§° gives a smooth function. We can actually convolute with a compactly
supported distribution — this will allow us to approximate distributions by test functions via
mollification. However, we cannot convolute, in general, with a smooth function

Definition 1.5 (Convergence of Distributions). u, € D' converges as a distribution to
weD if for all p € CF°, un () = u(yp) as n - .

Theorem 1.1 (Sequential Convergence of Distributions). If u,, are distributions such
that for all p € C§°, u,(p) converges, then there exists u € D' such that u, — u in the
distributional sense. Furthermore, if p, — @, then u,(p,) = u(p) as n - oo and on each
compact set K, the order of u,’s are uniformly bounded.

Proof. 1. Fix K Ceompact R® and ¢ € CP(K), then |u,(¢)| is bounded uniformly in n
(pointwise bound)

2. we can apply the uniform boundedness principal (because C§°(K') is a Frechet space)
to get H“n||cg°(K)—><c <C < oo foralln

3. pass to a limit
O]

This is nice. If u, are nice functions, and we understand what they do to test functions,
then we automatically get a distribution. And we can easily compute what this distribution
does to things, or sequences of things.

Theorem 1.2 (Approximation of Distributions). C§° is dense in the space of distribu-
tions.

%y vanishes on an open set V if for all ¢ € C§° supported on V', u(p) =0

— 5 -



1.1 Distributions

Proof. Let’s approximate u € D’
L. let p e C°, with [ ¢(z)dz =1 and let @5 = d"p(d )
2. s *u is smooth an converges in distribution to u

3. to see this use the definition of convolution, see that s — ¢ in distribution, then see
all derivative go to the correct thing, then use continuity

4. for compact support, throw in cuttoff functions whose support expand to the entire
space.

[]

Proposition 1.3 (Differentiation of Characteristic Function). 0;1y = —(vav);dSau,
where vy 1s the unit out normal vector, and dSgy is the distribution which is the surface
measure on OU

The first term direction makes sense, the function increase going towards the interior of
U. The second term ensures the support is only on the boundary, and is properly scaled.

Definition 1.6 (Singular Support). The singular support of a distribution is the compli-
ment of the largest open set where the distribution locally coincides with a smooth function.

Proposition 1.4 (Multiplication of Distributions). We can multiply distributions if
their singular supports are disjoint.

The converse is false®. The prove this, show that if u, - u and v, - v are C§° approxi-
mations of said distributions, then wu,v, converges to a distribution. Use a cuttoff function,
use linearity, and continuity of distributions.

Proposition 1.5 (Convolution of Distributions). We can convolute distributions as long
as at least one has compact support. And the usual support property holds

Again this can be shown by approximation.
Corollary 1.1 (Convolution of Distribution with Dirac). If ueD’, then 0 * u=u

Remark 1.1. For all these we use heavily the sequential convergence of distributions.

1.1.3 Fundamental Solutions

Definition 1.7 (Fundamental Solution). For a differential operator P, the fundamental
solution F, € D at y is such that PE, =,

Not rigorous, but if we want to solve Pu = f for a differential operator P with adjoint P’
whose fundamental solution at z is denoted (E’)?, then:

u(x) = (u,0z) = (u, P(E')*) = (Pu, (E")") = {f, (E)")

*multiplication can’t be made associative: (¢-z)pv(1/x) #d(x-pv(1/z))

- 6 —



1.1 Distributions

Proposition 1.6 (Translation for Constant Coefficient Fundamental Solution). If
P is a constant coefficient linear scalar PDE* and PEy(x) = 6o(z). Then (1) P,Eo(xz—y) =
by(x) and (2) PJEo(x —y) = 6y(x).

In other words, E, = Ey(x —y) and (£")*(y) = Eo(z - y)
Theorem 1.3 (Representation via Fundamental Solutions). If Pu = f with P a con-

stant coefficient linear scalar PDE. Then if f has compact support, then w= Ey* f. If u has
compact support, then u = Ey * Pu.

Example 1.1. 0F %H(m)) =do(x) (where H is the Heaviside function).

Using this and the representation formula, we get:

Theorem 1.4 (Taylor’s formula with integral remainder).

() = z P -0+ gy [P -9y

Note that the integral is ONulpqp) * N H

1.1.4 Structure Theorems for Distributions

Theorem 1.5 (Order of Compact Supported Distribution). If u € £&'(R"), then it has
finite order.

Proof. This is almost immediate from Proposition 1.2. O

Theorem 1.6 (Distribution Supported at a point). If u € D'(R) is supported only at
To, then u =¥ <y CaO0%0x,

Proof. 1. By Theorem 1.5, u has order N,

2. for each ¢ € Cg°, Taylor expand to get: ¢ = ¥4cy Ga®® + @, Where 9%py(0) = 0 for
all o] < N

3. it can be shown that (u,py) =0

4. so u will only detect a, which depend on derivatives of ¢ at 0.
O

Theorem 1.7 (Structure Theorem of Compactly Supported Distribution). IF u
has compact support, then u =Y 4N 0% fo for fo € CO

Theorem 1.8 (Structure Theorem of Distributions). Ifu € D', then there ezist f, € C°
that are locally finite (I think) so that u =Y, 0%f,.

2this gives existence of fundamental solutions by Malgrange—Ehrenpreis



1.2 Four Important PDE

1.1.5 Homogeneous Distribution

Definition 1.8 (Homogeneous Distribution). A distribution u € D'(R™) has order a if
for all p e CP(R™), A >0

AT <U, QO(/\» =\ (u7 @)

Define uy as (uy,p) = A4 {u, p(A™%) (if u was a function, uy(z) = u(Ax)). Then an
equivalent definition of homogeneous would be:

{ur, ) = A" (u, p)
Example 1.2. § € D'(R") has degree —n
Proposition 1.7 (Properties of Homogeneous Distributions).
1. if u is homogeneous of degree a, then 0%u is homogeneous of degree a — |

2. if ue R*\ {0} is homogenous, than it has a unique extension to R™ we require 7.3 a >

-d-1

3. A% (uka 90) =a (U)\, @)

1.2 Four Important PDE

Reference: Evans 2.2-2.4. Laplace’s equation: fundamental solution, mean value property,
maximum principle, energy methods, Harnack inequality; the heat equation: fundamental
solution, regularity /smoothing, maximum principle, energy methods; the wave equation:
fundamental solution, finite propagation speed, Huygens’ principle, energy methods

1.2.1 Laplace’s Equation

To compute the fundamental solution of —A, first note the Laplacian is rotationaly invariant
(Exercise!l), so we expect Ey = Eo(r) to be radial. We can take the Laplacian and get the
delta function. The trick is to pair it with the correct thing, which is a ball of radius 7:

1= <(S()(ZE), 1Br(0)> = (-AE(), ]-BT(O)> = f VEO : leT(O) = f VE() . VBT(O)dSBT(O) (].)

VEy - vp,.(0) = Z(?m].Eo%. Chain rule: 0., Eo(r(x)) = 0,Eo0,,r = 6’TE0%. So VEy v, (0) =
GTEO(T):—E =0, Eo(r). So (1) becomes:

1=0.Eo(r) ./63 © dSsB,(0) = O, Eo(1)][0B,(0)]

Therefore Eq(r) = [, |0B(0)|"'ds = cq [, 7rds = camms
Theorem 1.9 (Fundamental Solution of Laplace Equation).

cologlx| n=2
Ey(z) =
() {cn|x|2‘” n>2

- 8 —



1.2 Four Important PDE

Note that cAlog|z| = 6y(z) = c0.0. log || = c0.|z|"!, so we have the fundamental solution
for the dbar operator as well.

Note that Ej is a distribution because it is locally integrable.?
Theorem 1.10 (Regularity of Harmonic Functions). If Au=0, then u e C*

Proof. Fix x, let x € C§° be a cuttoff, yu = xyu 6 = xu » (-AEp) = (-A(xu)) * Ey. Note
A(xu) = (Ax)u+2Vx - Vu. So we get:

u(@) == [ (A)u+ Vu- V) Eole - y)dy
the integrand is supported away from the singular support of Fy(z —-) O

This can be generalized. If P is any differential operator whose fundamental solution has
singular support at the origin, then Pu =0 implies u e C'*.

Theorem 1.11 (Derivative Control of Harmonic Functions). If Au =0, then [0%u| <
ﬁf&(x) |u(y)|dy for all r>0.
Proof. 1. use above representation to get [0%u(z)| < [ |(Axu +2Vx - Vu)9SEo(z - y)|dy

2. let x be 1 on B,j»(x) and supported on B, (z) with |9y < £

r|0“

c

rd=2+[a|

3. On support of integral, 0% Eq(z —y)| <

4. move derivative off u, use control on x to get get final result.
]

Theorem 1.12 (Mean Value Property of Harmonic Functions). If Au =0, then for
all 7> 0, u(x) = fy () w(¥)dSo8, (x)

There are two tricks to this proof: (1) add a constant to fundamental solution so it
vanishes where we want (2) remember what the derivative of the fundamental solution is.

Proof. 1. u(z) = [ 1p,@)(y)u(y) (-2 Eo(z - y))dy
2. Integrate by parts, one term is I = _faBT(a:) u(Y)VoB, (z) - VEo(x —y)dSp, () (y)

3. The other term we integrate by parts, use Au = 0, to get Iy = /-BBT(I) Vu(y) Vs, () (y) Eo(z-
Y)dSaB,(z)

4. Since the fundamental solution is radially symmetric, we can add a constant to get
Eo(z - y)|op.(z) = 0 so that I, =0

5. The first term is faBr(x) u(y)Ey(r)dsS = |6Br(x)|faBr(x) u(y)dsS

The same conclusion is true for solid balls, found by integrating this result.

°I got held up trying to compute [ |z|™* using spherical coordinates. Computing the Jacobian is hard,
but to remember the power of r in the volume element, just compute the volume of a sphere. We should
have dz = r""!. Then we integrate j 17 50 we require n —1 - a > -1

- 9



1.2 Four Important PDE

1.2.1.1 Boundary Value Problem

Theorem 1.13 (Representation Formula for Laplace on Bounded Domain). For
ue C(U) with U an open bounded set in R"™, then:

u(z) = - fU Au(y)Eo(x —y)dy + faU (u(y)vou - VyEo(x —y) + Vu(y) - vov Eo(z —y)) dS(y)

It is important to remember that the derivative on Fj is on the y variable.

Proof. w=1pu*-AEy = -1yu * 0;0;Ey = —((0;1y)u + 1y (0;u)) * 0; Ey. First term we keep
as [o,uv - VEy. Second term, we expand to —(9;1¢)(9;u) * Eg — 1y(9;0;u) * Ey. First one
is [y V- VuE(x - y), second is — [, AuEy(x - y)dy O

This gives us a mean-value theorem for functions which are only harmonic in a bounded
region. Also we only need u € C? (and probably even less) for this theorem to work.

Theorem 1.14 (Strong Maximal Property of Harmonic Functions). Let u be Har-
monic on U (a bounded, open, connected set). Then if there exists xg € U with u(zg) =
maxg u(x), then u is constant on U. This implies that harmonic functions achieve their
mazximum on the boundary (weak mazimal principal).

Proof. By mean-value property, M = u(xo) = f55u(y)dy < M for all balls contained in U.
This implies v = M on the boundary. Use connectedness to get result. O

This gives uniqueness of the Dirichlet problem..

Theorem 1.15 (Harnack’s Inequality). If u is non-negative harmonic on an open set U.
And V is an open, connected set with V c U. Then there exists C' (not depending on w) such
that max, .y v < C'min,y u

Proof. Idea: use balls, compactness, and mean value property.
1. let r < dist(V,0U)
2. forz,y eV, v -yl <r, u(@) = f 0y u < B [, ) 4 =2 fp, ¢y 4 = 2%u(y)
3. similarly, w(z) = f5, (> |Bar(2)| [5, () u=2"%(y)

4. use compactness to cover V with N balls of radius 7, to get 2-Nu(y) < u(x) < 2%Nu(y)
for all x,y eV

5. take sup over x, and inf over y.

— 10 —



1.2 Four Important PDE

1.2.1.2 Green’s Functions

-Au = U -Au=0 U -Av = U
To solve u=f split and solve “ and v=f . The first one
u=gqg U u=4g oU v=0 oUu
-Au=-Ag U
is equivalent to solving % g 5U with g an extension of g. Then set u = u + g.
=

Conclusion: to solve inhomogenenous, nontrivial boundary condition Laplace equation, it
suffices to solve inhomogeneous, trivial boundary condition.

Definition 1.9 (Green’s Function). A Green’s function for a bounded set U is G(-y) €
D'(U)nCYU ~{y}) for all y e U that solves

~AG(x,y) =o(z-y) wyel
G(z,y)=0 xedU

Theorem 1.16 (Basic Properties of Green’s Functions). 1. Ge C*(UxU~{x =y})
2. G(z,y) =G(y,x) forx+y, x,yelU

3. G 18 unique.

A clean definition is -A,G = ¢,, -A,G = 0,, and G vanishes if either variable is on the
boundary.

Theorem 1.17 (Poisson Integral Formula). If U is a C' domain and u e C>(U), then:

u(x) = /(;U w(y)v-v,G(x,y)dS(y) + fU(—Au)G(x,y)dy

So to solve our inhomogeneous Dirichlet problem —Aw = f, then u(z) = [, G(z,y) f(y)dy.
So 1yG(z,y) is the kernel of the pseudodifferential operator (-A)~!. It makes sense it is
smooth off the diagonal.

Example 1.3 (Green’s Function for Half Space). If U = {x e R": x,, > 0}, and Ey(x)
is the fundamental solution of the Laplacian. Then G(x,y) = FEo(x —y) — Eo(x —y) is the
Green’s function for U (where (yi,...,Yn) = (Y1, Yn-1,~Yn)-

This is because if y € OU, then y =7y, so G(x,y) =0. And -A,G(z,y) =0(x-y)-d(x-7).
If the support is restricted to U, then this is §(x —y).

Cxn

We can compute v-V,G(x,y) for yedU as g SO
u(z) = “’7"[ 9@,
|z - yl”

solve Vu=0 and u=g on z, =0.

— 11 —



1.2 Four Important PDE

This can be rewritten as the Poisson kernel, P,(x) := cdm, then u(z) = P(x) * f
solves the equation:

u(0,z) = f(x)

Example 1.4 (Green’s Function for unit ball). The Green function for the unit ball is
G(z,y) = 2(y—x) - ©(|z|(y - 7)) where & = ;5.

{(83+Am)u:0 t>0

This can be used to Laplace equation with boundary data on the unit ball. It turns out
2
that 0, u?G(z,y) = O Ll for |yl = 1. Therefore:

|z—y|"
1|z 9(y)
=0ty Jos T =y )
where u(x) = g(z) € CY for |x| = 1.
We can solve this using harmonic analysis as well (for d = 2). Suppose u(e?) = g(6),

then a solutions is u(re?) = Y, ,G(n)rMe?  If we let P,(z) = ¥ rile™*  then we see that
u(re?) = P, x f. We call P, the Poisson kernel, and is:

1 -2

1-2rcos@+r2

P (0) =

1.2.2 Wave Equation

We want to solve:

Ou(t,x) = f R+

u(0,r) =g
8tU(O, LIZ‘) =h

with 0= (-0? + A)
Theorem 1.18 (Fundamental Solution for Wave Equation in 1-dimension). The
forward fundamental solution to the wave equation in 1-dimension is F, = —%H(t—w}H(Hx)

Proof.
Lletu=t-z,v=t+zs0 (t,x) = (3(u+v),2(v-u)),s0 8y =3(0-08,),0, = 2( + Iy)
2. So if oEy(t,x) = 0(x,y), then —40,0,Eq(u,v) = 0(z,y)

3. 8(z,y) =lim.ge2x (e, e7x) = lim.oe2x (e S (utv), e 1 (v-u)) = §(u,v) [ x (5 (u+
U): %(U - u)) = 25(“,@)

4. 50 0,0,Ey = 36(u)d(v), so Eg(u,v) = 3 (H(u) +c1)(H(v) +¢2)

5. For Ej to be supported in positive time, we require ¢; = ¢o =0

— 12 —



1.2 Four Important PDE

]

For uniqueness, and in order to convolve with distributions, we require the technical
definition:

Definition 1.10 (Forward Fundamental Solution to Wave Equation). E, is a forward
fundamental solution to the wave equation is

1. oE, = 6(t,x)
2. supp E, c {t >0}
3. if I c R is compact, then supp E, n{(t,z) :t € I} is compact

Theorem 1.19 (Basic Forward Fundamental Solution Properties). If E, is a forward
fundamental solution then (1) E. is unique (2) if u € D" with suppu c {(t,z):t > C}, then
u* E, 1s well defined.

Theorem 1.20 (Representation Formula with Forward Fundamental Solution).
For p e C*(Ryo x R9Y):

o(t,x) =0p * B, = 0(Ey * dp-0p) = By * (81200:p)

Theorem 1.21 (Wave Equation Representation Formula 1d). If u € C*(R2) solves
Ou = f
u(0,x) =g , then:
Owu(0,2) =h

atoy=5 [ [ p sy - Sott ) - g-2) -5 [ hw)dy

Theorem 1.22 (Forward Fundamental Solution to Wave Equation). The forward
fundamental solution to the wave equation is:

1 —d+1
E (t,x)=- 77 Lte[0,00) X+ (t2 - |I|2)

27 2

with x¢ =T(a+ 1) ex® fora>-1, forkeZ, x;* = 5ék_1) and X?_k = %%(H(m)x‘m)

Proof. 1. (a) by symmetries, E, is homogenous (b) OF, = ¢ has degree —d -1, so E, has
degree —d+1 (c) O is invariant under Lorentz boost t2—|z|? (degree 2) and E, supported
in forward time so F, = x(t? - |z|?)1(0,00)(t) with x some homogeneous distribution of
order %(—d + 1) supported in [0, 00) note by uniqueness of homogenous distributions,
only need to define it on R'*" ~ {0,0}.

2. Computing OF, away from origin, gets crazy cancellation to zero (there is a trick with
derivatives of homogenous distributions that is used), thus it is supported on the origin.
Therefore it is a constant times the delta function.

— 13 -
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3. For a € C, define x% = ¢,1,502? (this is L}, for R(a) > -1) and homogeneous of degree

a. For a e R, (x?)" = colaspax®t = f“‘i)@ 1 use this to inductively define x¢. for all

acC

4. letting c,a = ¢4 gets everything to be 1. This is satisfied by ¢, = 1/T'(a + 1), so
(x2)"= x4
0 - -1 _ -k — sk-1)
5. X% =H(x), s0 x3* =do(x), so x7# =85 .

—lk;

6. x:' =7 2 H (2)a 2, s0 X = A (H(w)a 1)

7. there is a computation to get the proper constant.

O
Dimension E.(t,x)
1 c1 1o H (82 — 22)
T2
2 Co ltZO H\}ig_ig)
3 c31ex000(t - |2[*)

Theorem 1.23 (Huyghen’s Principals).

1. (Weak Huygen’s principal / finite speed of propagation) If (t,x) is such that u(0,y) =
u(0,y) =0 for all |x —y| <t and Ou(s,y) =0 for all s € (0,t) and |t — x| <t-s, then
u(t,z) = 0.

2. (Strong Huygen’s Principal) If d > 3 and is odd and (t,x) is such that w(0,y) = u(0,y) =
0 for all |x —y| =t and Ou(s,y) =0 for all s€(0,t) and |y —x|=t-s, then u(t,x) =0

Proof. First follows from suppE, c {(t,z):|x| <t}, second follows from the fundamental
solutions for d > 3, having x = §(*), which are supported on {(¢,) : |z| = t}. ]

Theorem 1.24 (d’Alembert’s Formula). In one dimension, we have the following solu-
tion to the 1-dimensional wave equation :

u(ta)= 5o+ ) rgle-0) 5 [ hw)dy

Theorem 1.25 (Poisson’s Formula). In two dimensions, the solution to the wave equation
18:
1 tg(y) +1h(y) +tDg(y) - (y —x) ,

) =
U =3 T R DI

Theorem 1.26 (Kirchoff’s Formula). In 3-dimensions, the solution to the wave equation
s of the form.:

u(z,t) = B th(y) +g(y) + Dg(y) - (y — 2)dS(y)

- 14 -



1.2 Four Important PDE

Theorem 1.27 (Duhamel’s Principal For Wave Equation). To solve ou = f with zero
initial data, then u = fotu(t,x; s)ds where u(t,xz;s) solves:

Ou=0 (s,00) x R
u(z,8)=0
ut(x78) = .f(xa 8)
If d=1, then:
]_ t xr+t—s
u(t,z) = 5 f f f(y,s)dyds
2 0 r—t+s
if d=3, then:

1 t-|y -
NSy gy ((REVESIIM
A1 JB(xrt) ly — x|

1.2.2.1 Energy Methods
We can prove uniqueness to the wave equation using the energy functional e(t) = [, u? +
|V ul?dx
1.2.3 Heat Equation
The heat equation is:
uy— Au = f
u(0,7) =g

Theorem 1.28 (Fundamental Solution to Heat Equation). The forward fundamental
solution to the heat equation is

I e

P(t,x) = 1t>0W6 it

Proof. 1. Fourier transform pde: @ = |£]?@ so @ = @(0)e ¢
2. Fundamental solution is F~'[e-é"].

3. This is (27) ™" [ e kPeizéd¢. Let u = /2t€.

o 22
4. Integral becomes (27)~"(2t)~"/2 [ e~v*/2¢"" V2 du, integral is Gaussian, becomes (27 )™/2e™ 3

5. after everything, get e=*/(41) with constant (2m)="/2(2t)~"/2
O

Theorem 1.29 (Existence and Uniqueness of Homogenous Heat Equation with
L? data). If g € L2, then there exists a solution to the heat equation u € Cy([0,00), L?) that
is unique and Ju(t, 2)| : < gl .
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Proof. 1. Taking the Fourier transform, @(t,¢) = e~t6G(¢). The Fourier inversion formula
gives existence (RHS is SL? c L?)

2. Ju(t,2) ]z = [0 )12 < 19112 = |92

3. Ju(t,x) —u(s, )|z = H(g(s—t)lé\2 - 1)’g\(§)HL2 — 0 by the dominated convergence theo-
rem.
4. if u = v solve this, let w = u — v, then (9, + [¢[2)@ = 0 so J,(e’@) = 0, so ek’ @ is
constant, but it is zero if ¢ = 0, so it is zero. By Fourier inversion, w = 0.
[

Note that ®(t,z) is an approximate identity sequence with parameter t. So if u(t,z) =
®(t,z) *, g, then we see many things:

L. if g e CP, then u(t, x) St g(z) uniformly on compact sets.

2. if g € LP, then u(t, ) Kt g(z) in LP

3. for t >0, u(t,z) is smooth in space and time if the initial data is a tempered distribu-
tion.

Theorem 1.30 (Solution of Nonhomogeneous Heat Equation). To solve the non-
homogeneous heat equation, (0 — A)u = f fort>0 and u=0 fort =0, the trick is to write
u(t,x) = fotu(t,:r:; s)ds where u(t,x;s) solves the initial value heat equation:

{(&—A)UZO t>s
u(s,x) = f(s,x)

which has solution u(t,x;s) = (t—s,x)* f(s,x) (of course this is not justified, but it works),
s0:

u(t,x) = '/Ot—éd f(s,y)®(x -y, t-s)dxds

Theorem 1.31 (Heat Equation Strong Maximum Principal). If U c R" is open,
Ur =Ux(0,T], I'r = Up N Up. If ue C?*'(Up) n C(Ur) solves the heat equation, then
maxg,, u =maxr, u. If U is connected and u attains a maximum in Ur: u(to, vo) = maxy, u,
then u 1is constant on Uy, NOTE: constant on earlier times only

Remember: weak does not imply strong because we could have a function that looks like
a w.

The proof requires the following fact that must be memorized:

Theorem 1.32 (Heat Equation Mean Value Property). If u solves the heat equation,
then:

1 x—yl?
U(t, l’) = 4_7003 ff U(S7y) |(t _ s)|2d8dy
E.(txx)

where E.(t,z): {(s,y) :s <t ®(t—s,x—y) > 1/r?} is the heat ball of radius r
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Proof. 1. wlog (z,t) = (0,0), let f(r)=r"" [, E’—fdyds

2. use that ﬁ”&(o) ‘Z—'; =12 then by DCT |f(r) — u(0,0)| - 0, therefore f(r) — 0 as
r—0

3. compute f'(r) =0
[

The weak maximal theorem can be proven much more simply (and can be generalized to
parabolic equations):

Proof. Suppose u(to, o) = maxg,, with (Zo,z0) € Up, then first pretend that u; — Au < 0.
First, we require d;u > 0 otherwise we can just go backwards in time. But we also require
Au <0, this is a contradiction.

Consider v, = u — et, then (0, — A)u. < 0. So if u solve the heat equation and has
a maximum attained inside Up, then since v, goes to u, we can use the above to get a
contradiction. ]

Proof. Here is a proof of the strong maximal property:

1. let (tg, o) be an interior maximum with value, by mean value property u = M on a
2
small heat ball around it (this uses the fact that (4r)~ [[, , %dsdy =1

2. for any earlier point, connect a line segment between the two, u must be M on this
line segment (if not use continuity, get largest time this fails, extend heat ball, get
contradiction)

3. any previous point can be connected via finitely many line segments, get u = M on the
whole previous time.

]

1.2.3.1 Regularity

Regularity for unbounded domains are trivial via the Fourier transform. However, for
bounded domains it’s a little trickier

Theorem 1.33 (Heat Equation Regularity on Bounded Domains). If u is a classical
solution of the heat equation in the bounded domain Ur, then u e C*(Ur)

Proof. 1. assume u is smooth, then repeat this argument with mollifiers

2. fix (wo,to), consider the cylinders C,C’,C" with radius r,3r/2,r/2 and heights the
square of these the radius squared. Let £ be a cuttoff function supported on C, and
identically 1 on C".

2] wasted a lot of time trying to verify this, I'm not quite sure how to do it
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3. let v(t,x) = £(t, x)u(t, z), this is zero at time 0, and it can be computed that (0,—A)v =
&u—2DE - Du—-ulA = f

4. now we solve the nonhomogeneous heat equation, and use uniqueness to see that
t
U(t,l’) = ]0 ERn (I)(t_ S, T —y)f(y,s)dyds

5. expand this, integrate by parts to avoid derivatives falling on wu, then by support
properties of £ and singsupp ®, we see that the resulting thing is smooth for x € C"
m

1.2.3.2 Energy Estimates

The correct energy for a solution to the wave equation is e(t) = [,; u?(z,t)dx. This is because:

é(t)=/uutdx=quudx=—/|Vu|2£0
U U U

1.3 Characteristic Equations

Reference: Evans 3.2

Derivation, boundary conditions, local solutions

1.3.1 Derivation

Suppose we are solving a first order, scalar nonlinear PDE

(2)

F(z,u(x),Vu)=0 xzeUcR?
u(z) = g(x) rel coU

with ' and g smooth functions. Let (x,u, Vu) = (x, z,p)
Theorem 1.34 (Characteristic ODEs). If u is a smooth solution to (2), then on a curve
x = x(s) such that &; = 0p,F (i = 1,....n), then z(s) = u(x(s)), p(s) = (Ou)(x(s)) will
satisfy:

pi =0y, F = (0.F)p;

2(8) = ZpiaPiF
j=1

To remember: p; is just negative the first two terms of 0, F, &; has to just be memorized,
Z can be easily derived from the other two.

1. differentiate F' with respect to z;:

0= 0y F = (04, F) + (0.F)ps + Z(aij)a$iafju (3)
j=1
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2. to rewrite the third term, suppose = = x(s) is a curve, then:
aspi(s) = aS(aziu(x(S))) = Z(a‘fia@ju)i‘j
j=1

3. If ;= 0,, F, then (3) becomes:
0= (8z1F) + (azF)pz +pz‘

4. lastly:
2(s) =Y pidi = Y. piOp F
j=1 j=1

Idea: differentiate with respect to z;, use the chain rule. Get rid of the second derivative
falling on u by cleverly letting x = x(s) satisfy 0,,F = &;
1.3.2 Boundary Conditions

Definition 1.11 ( (¥ Boundary). U c R" open and bounded is said to have C* bound-
ary if for all xg € OU, there exists R > 0 and v € C*(R";R) such that Br(zg) nU =
{z € Br(xo) :xp >y(x1,...,201)}

Example 1.5. Consider S* and ¢ = (0,0,-1), then we can have R = 1/3 and vy = —/1 — 22 - 22,

Theorem 1.35 (Straightening The Boundary). If U is open, bounded, with C* bound-
ary, then there exist ® : R* - R and ¥ = &1, both C* such that det D® = det DY and for
all xo € U, there exists R >0 such that

(U n Br(o)) ={y € Br(xo) : yn > 0}

It now suffices to prove existence for characteristic equations that have a flat boundary.
To see this:

1. let u solve (2). Fix a point on the boundary, get ® and ¥ from Theorem 1.35. Define
v(y) = u(¥(z)) so u(z) = v((z))

2. Opu =3 0,,v0,,®; = (Vv- D®);, therefore Vu = Vv - DP
3. S0 0=F(z,u(x),Vu) = F(¥(y),v(y)Vv-D®) := G(y,v, Vv)

Theorem 1.36 (Noncharacteristic Boundary Conditions). If D,F (o, zo,po) - v(x¢) #
0, then there exists a function q : R® - R" defined locally around xo such that p(x) = q(x)
satisfies:

u(z) = g(x) xel

p(z)=0,9(x) zel, pLv

F(z,u,p)=0
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Proof. (for flat boundary)
1. u(z) =g(x) along I'. And p;(z) = 0,,u(x) =0y, g(x) fori=1,....,.n-1
2. Solve for p,, using F(z,u,p) =0, using the intermediate value theorem (9,, F' # 0).

3. now we need this to work in a neighborhood of x

(a) Let G(x,p):R*"xR" - R" be: G;(x,p) = p;—0,,9(x) and G, (x,p) = F(z,9(x),p).
(b) G<x07p0) = Oa

1 0 0 0
0 r - : 0
DPG(SCO,p()) = 0 0
0 0o - 1 0

o ' 0y, F - 0y, [ F 0, F

the determinant is 0, F' # 0, therefore we can locally solve for p continuously in
terms of x.

]

Basically, we can locally solve our PDE if D,F - v(xg) # 0, because this ensures we can
find initial velocities that work.

1.3.3 Local Solutions
Theorem 1.37 (Characteristic Equations Local Existence). Given the PDE

F(z,u(z),Vu)=0 zeUcR"

u(x) = g(x) rel coU
With T flat. If there is xo € I' such that (0p, F)(xo,9(x0),Vg(x9)) #0 (to get Ong(zo), we
have to solve F(x,u(x), Du(x)) =0 (this is somewhat circular?)) then:

There exists I c R containing 0, a neighborhood of xq in W c ' and V c R™ such that for
each x €V there is a unique s € I, y € W such that the curve x(s) solving Osx = 0,F, so that
x(y, s) = x. Inverting this, we have y(x) and s(x) are C?.2

Now for each x € V, we get y(x) € T' and s(x). Then define u(z) = z(y(x),s(x)),
p(z) = p(y(z),s(x)) which come from existence of ODEs. The values of p in the normal
direction are uniquely determined near xqo via the implicit function theorem.

Then it is a matter of calculus to ensure that u(x) defined this way actually solves our
PDE.

2this is an easy application of the inverse function theorem.
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1.4 Sobolev Spaces
Reference: Evans 5.2 - 5.8

Basic definitions, approximation, extensions, traces, Gagliardo-Nirenberg-Sobolev inequality,
Morrey’s inequality, general Sobolev inequality, compactness, Poincaré inequality

1.4.1 Basic Definitions

Definition 1.12 (Sobolev Space). Given U and open subset of R™, we define:

WhEP(U)={feLP(U):0f e LP V¥ |a| <k}
where derivatives are taken in the sense of distributions.
The norm we put on Wk? is:

| flwes = 22 10°fI,

la|<k

This norm is makes W*? complete and hence a Banach space.

Definition 1.13 ( 1W/"(1)). For U and open set, we define We*(U) as the completion of
Co?(U) with respect to the metric ||y

This is strictly smaller than W#?. When p = 2, we define Wk? = H*. An equivalent norm
we can apply to HF is:

£ 1e = | (&) 7]

and this works for k € R. (£) can mean (1 + |¢])* or (1 +|¢]?)%/?

L2

An equivalent definition of H*(R") is:
H*(R") = {ueS'(R"): (D) ueL?}

where (D)* = F-1(£)° F.
Definition 1.14 (Negative Sobolev Space). W=P(U) is all u € D'(U) such that there
exist go € LP (la| < k) such that u = ¥, D*go. The norm is defined as:

[l ey =inf 37 lgallze
9o ol

Theorem 1.38 (Duality of Negative Sobolev Spaces). For a domain U, andp € (1, 00),
(WEP(U))* = W-ke'(U). Moreover if U has C* domain, then (W (U))* = ngk’p’(Rd)

The advantage of this is that, for instance:

||UHH-1(U)= sup  (u, v) s
ol 1 =1

(For example if f € H~1(U), then there exist go, g, € L?, such that f = go + X421 9°9a)-
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1.4.2 Approximation

Theorem 1.39 (Approximation of Wk»). If U is an open set, then C$*(R") is dense in
Wh(U).
If U is bounded with C! domain, then C>(U) is dense in Wk»r(U).

The idea behind proving these is as follows:

1. By mollification can get convergence in I/Vllch (the key thing to show is that 0%(n. xu) =
1 * 0%u)

2. By choosing a partition of unity, can approximate elements of W#?(U) by elements in

C=(U)nWkp

3. by smoothing the boundary, get best result.

1.4.3 Extensions

Theorem 1.40 (Extension of W#»(U)). If U is an open, bounded domain of R™ with C*
boundary and V' an open set containing U, then there exists & : WFP(U) - WEP(R™) such
that for ue Wk»(U) ,:

1. E(u)|ly =u
2. suppE(u) cV
3. ||5(U)Hwk,p(Rn) S “u”W’w’(U)
Proof. reduce to flat boundary, then reflect and brute force it.
1. since what we want is bounded, it suffices to show this for a dense domain, C*(U)

2. cover the boundary in balls to smooth out the boundary. Use compactness to reduce
to a finite subcover. Then we can use a partition of unity to consider extensions on
each of these pieces

3. it suffices to extend u € C*(B;(0),R4)
(a) set E(u) = u for z4> 0 and for x4 <0: E(u) = ¥ ayu(a’, —B;x4)
(b) for C*, need left and right derivatives to agree: 1= Y7(-f;)!a; for [=0,1,...,L.

(c) this system of equations is solvable if f3; are distinct (vandermonde), and if they
are less than 1, we get the correct support property.

]
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1.4.4 Traces

Theorem 1.41 (Existence of Trace of Sobolev Functions). IfU is a open domain with
C' boundary, then there exists a unique bounded linear map Tr : WLP(U) —» LP(OU) such
that Tr(u)| = ulgy for allue W»(U)nC(U)

The fact that the norm of the boundary data can be controlled by the norm on the inside
is non-trivial and relies heavily on the divergence theorem.

Proof. Suffices to show for u € C=(U). After straightening the boundary with finitely
many neighborhoods and using a partition of unity it suffices to control [ux/| .oy With
Q= {z, >0} and x a smooth cutoff function.

1. Hux”ip(am = [, _oluxPdz’ = = [ Jux|P(~1)dz’, then apply the Gauss-Green theorem to
get _[Q o, (lux|P)da

2. integrand is bounded by a constant times |ulP + [u[P~=1[0,, u|

< |u|P(p_1) + |833nu|p
> P .

3. for the second term, use Young’s inequality: |u|P~|0,, ul "

Trick: for Sobolev inequalities, the following useful identity was used:

— P Y4
(p=Dar b
p p

aP b <

for p>1,a,6>0
Theorem 1.42 (Trace Zero). If U has C' boundary, and uw e Wtr(U). Then Tu = 0 if
and only if ue Wy

1.4.5 Gagliardo-Nirenberg-Sobolev Inequality

In all these inequalities, we have 1 <p<n
Theorem 1.43 (GNS C§°(R") inequality). |u o gey < Cl[Vullpigay for all u e
Coe (R)
Theorem 1.44 (Dimensional Scaling for L? functions). If uy = u(A™1z), then
o d—fal
|0 UAHLp(Rd) = A7

Proof. (of GNS inequality)Use fundamental theorem of calculus and Holder’s inequality.

L. Let f; = sup,, |u(z1,...,2,)|, note u(z) = 5 Owu(xy,. .. t,...x,)dt, so that f; <

|Dul,,
2. since u < f; for all i, we have [ |uzdz < [ I—[fi(d_l)ildx.

3. Apply Looms-Whitney Inequality, to get [ |u|ﬁda: <TI fil/ (d-1)

Ld-1

*here Du = Y7 O;u
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S0 S 1Dul D so T £

4. note It

_d_
< | Duf ', Flip the exponents and

Ld-1 Ld-1

we are done.

[]

Theorem 1.45 (Loomis-Whitney Inequality). Let f;, i=1,...,n, be nonnegative mea-
surable functions on R™ such that f; is independent of the ith coordinate. Then:

n

[1/

1

n
<[T1fill s
1

It

Proof. The key is that | If(z,9)] e

= Hf(xay)”L%y
L [ fifofadey = fi [ forfuday < fL TS| fill oo (iterated Holder inequality)
]

2. [ fifofs o fudrrday < [ fiTT57 | fill cyor dwo < [ foll s [l pos sl g, oIl e
3. keep repeating this process.
O

Theorem 1.46 (GNS W'» inequality). Let u € C*(R"), then |u| - < C|Dul;,.

where z% = g - 1. Note that p* > p. So maybe we can think of this as bounding an LP

norm by pulling off weight in the p* and putting on the regularity.
d-1
T

I

Proof. 1. [|ulP"dz = [ u["@T) < C | Dul

2. by Holder: |Du|"||;. <C H|u|”/‘1H% HDqu

3. then just do algebra on constants to get the result.
O

Theorem 1.47 (GNS WP (U) inequality). If U is an open and connected subset of R
then for ue Wy (U): |l e 0ry < C DU oy If we WHP(U) and U has C* boundary, then
lull Lo 0y < C lullwrogory

Note: the last inequality involves the full W1» norm, but this can be weakened if T'r(u) =
0

Proof. The first is trivial as we can approximate u by functions in Cg°(R") converging in
VVO1 P for which we can apply the above GNS inequality (the details are also covered in the
next case).

For the other case
1. extend u to Eu :=ue WlP(R")

2. approximate u by u, € C§° in Wh»p
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3. |un = wml ;»» = 0 by GNS, therefore w,, - u in LP*#
4. apply GNS and fact that @]y, < [u]ym e,
[

We can refer to the the W, ”(U) case as Poincare’s inequality, and can easily generalize
it as:

Theorem 1.48 (Poincare Inequality). For U and open, bounded subset of R™, u €
W, P(U), then:

[ull Lo < C [ Dul

for all g € [1,p*]

1.4.6 Morrey’s Inequality

This section deals with p > n, in this case we have

Theorem 1.49 (Morrey’s Inequality). For ue C*(R"):
HUHCO""(Rd) < ||UHW1,p(Rd)

with =1 -4
p

where we define the Holder norm as:

Ju(z) —u(y)|

a(Rdy = SUP —— o +
oy = sup PP o

~

::[u]cO,a

Proof. idea: for both things we need to estimate (|u(x)| and |u(z) — u(y)|, use a potential
estimate, then Holder’s inequality, the rest is algebra.

1. fix z, then:
()| = 1B, [, u(x) - uly) +uo)dy

<1B @[ [ fule) ~u@)dy < 1B@F [ )y

r

2. bound second term by Holder: r= | B, ()| 1 ]l o5, (2)) = Crn(p=1)p~'-n |l 2o (5. ()

3. second term is bounded by [Br(l,) Du)l 7y,

lz—y|n-1

(a) Sop, @ [0(y) —w(@)|dy = 1" [op o) lu(zr + ) —u(z)ldz = 71 fop o 1) Gultz +
x)|dtdz < rmt faBl(O) [y |Du(zt + z)|dtd=

4f f, > fin L? and f,, — ¢ in L9, and we are on a compact set and p < q. Then f, - g in LP, therefore
f = g almost everywhere.
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(b) fos, ) Jo [Dulzt +@)|dzdt = [y ) [Duly)lle - y|"dy*

(c) get faBT.(:c) lu(y) — u(z)|dy < rmt faB,.(a:)) |Du(y)||x - y|*dy. Integrate both sides
from r = 0 to r = R, replace on the RHS B, (z) by Br(z) to get: fBR(x) lu(y) -

w(@)|dy < CRN [y, @) 1Du)lz - y["~'dy

Du n— .
4. by Holder fBT(x) Duw)| gy < | Dull o5, ) 1T = 9" 1o (3, (ayy-  The second factor is

lo—y["~1
finite because p >n = (n-1)p(p-1)~t <n. It’s value, after some algebra, is Cr®

5. 80 [u(@)| < | Dull o g,y + 777 |ull o, 2y 17 = 1, we get [ulco < Jul

6. Next, for z #y, let r = |z - y|, then:

1
(@) 1)1 (5 o o o 90 8@+ [ uy) - u(e)lde)

since |B,.(x) n B.(y)| > C27"r", we can bound each of these terms by
£, o @) —u@Ndz<C [ DU~ oDz < C | Dul s,y 1
B (x B (x r

(or with = replaced by y)
7. divide by 7, get [u(x) - u(y)[r= < | Dul 1 (gny
O

Theorem 1.50 (Potential Estimate for Morrey’s Inequality). If u € C'(B,(x)), then

L[er(x) u(z) - u(y)ldy < C Mdy

Br(2) |z —y[*!

The proof of this involves switching back and forth from polar coordinates.

Another useful bound that is used is:

([] f($)dx) < HfHLp(U) |U|(pf1)p—1

Theorem 1.51 (Morrey’s Inequality for W'?). If U is a bounded open domain with
C' boundary, then for all w e WiP(U), then u is almost everywhere equal to u* € CO(U)
(a=1- %) i U and HU*HCO@(U) <C HUHWLP(U)

Proof. Use extension, approximations, and the above to get a sequence of smooth compactly
supported functions which is Cauchy in Holder norm, and therefore has a limit which is is
Cauchy. ]

awe are integrating [831(0) [y ft,w)dw = faBl(o) Jo ft )t dw = fBT(I) F)t"(y)dy
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ueCg*(R"), p<n Hu”LP’(]Rn) < ”Du”Ll(R”) GNS
ueCe(RY), p<n | Jul @y < D] L gn GNS
uwe Wy (U), p<n |l @) < IPuf oiry | Poincare/GNS
ue Whr(U), p<n® | ulp <fulyioq GNS
ue CYR), p>n | |ufcoa@n < |ulwipen Morrey
ue WHU), p>n " | |u*]coa@y S [tlwrrw) Morrey

1.4.7 General Sobolev Inequalities

For both the following theorems, k € Z.g, p € [1,00), U is a bounded domain and either
we WiP(U) or we Wkp(U) with U having C* boundary.

Theorem 1.52 (General Sobolev Inequality).

HUHWL’«;(U) <C Hu||Wk,P(U)

for%—KZ%—k (€€Z>0,€§k; qe[]-7oo)) and

(0 HCM(U) <C HUHWk,p(U)

for—ﬁ—azﬁ—kforae(o,l), 0 €Zsg, and £ < k
To remember constants: (1) regularity cannot increase (2) ¢ # oo (3) degree of homogene-
ity of top order term on LHS must be > RHS.

One thing to look at when considering u € W% is the ratio n/p. If k > n/p we are Holder
continuous, if k£ < n/p, then we have some control on the L4 norm

1.4.8 Compactness

Definition 1.15 (Compact Embedding of Banach Spaces). We say X compactly em-
beds into Y for Banach spaces X and Y (written X €Y ) if (1) X c Y, (2) |z|y < C|z|
for all x € X (8) every bounded sequence in X has a convergent subsequence in'Y

Equivalently, the inclusion ¢ : X - Y is a bounded compact operator.

Theorem 1.53 (Rellich-Kondrachov Compactness Theorem). If U c R" is bounded
and open with C* domain and 1 <p <n, then Wi»(U) € L4(U) for all g € [1,p*)

For ¢ < p*, this is stronger statement than GNS, however, something funny happens for
q=p"
Proof.

1. Inclusion and boundedness of inclusion is trivial by GNS

2. if uw e WhP(U) is bounded, WLOG may assume by extension they are elements of
I/VO1 P(V). Let ug, by mollifications, wlog assume they are all supported in V.

. =0 . . .
3. claim: u¢, — u,, in L7 uniformly in m.
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4. claim: for each € > 0, uf, are uniformly bounded and equicontinuous.

5. for each § > 0, pick € so |ug, — wm| . < 0/2 for all m, then use Arzela-Ascoli to get
subsequence of ug, which converge uniformly (and hence Cauchy in L9).

6. by triangle inequality, get limsup H“ma — Upy, H 10 S 0.
7. By diagonalization with ¢, = 1/n, get result.

]

Here is a proof of step 3, the idea uses: mollification approximation, fundamental theorem
of calculus, LP? interpolation.

Proof.
Loug, (@) = um(2) = [1:(y) (u(@ = y) = um(2))dy = [5, o) 1Y) (Un(z - €y) = um(z))dy =
[B1(0) 77(?/) fol %um($ - 5ty)dtdy
2. Lo, (v -cty) = —eVun,(z-cty) -y

3. Taking absolute values get [uf,(z) = um(7)| < €[5 o) foln(y)|Dum(x - ety)|dtdy. In-
tegrating over V, get [u, = um| 11y < €[ Dt 111y (haven’t verified this, but seems
clear).

4. then this goes to zero since u, are uniformly bounded in Whp,
5. interpolate: |us, — wmll o < [ug, — um||il us, =, ||foa
O

Theorem 1.54 (Rellich-Kondrachov Compactness Theorem (any p). For U c R”
bounded, open, with C' boundary. Then WiP(U) € LP(U) for all pe[1, 0]

Proof. 1f p <n, then since p* > p, we immediately have this. Now let p > n:

1. if w, are bounded in WP, then let p’ < n (so p’ < p) be such that (p’)* > p (this is easy
to get).
2. Then |wy |1 < |wn]prs. So w, are bounded in W#', so we apply compactness to

get wy,, converging in LP

]

ahere’s the key thing: 1< ¢<p*, so1>¢!>(p*)~! (if ¢ =1, then we were already done). Then Holder’s
interpolation theorem allows us to control ¢ norm by any convex combination of 1 and p*
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1.4.9 Poincaré Inequality

Theorem 1.55 (Poincaré Inequality for W'»). If U c R” is bounded, open, with C*
boundary, then for all pe[1,00]:

u- fu@dy|  <CIDul g
U Lr(U)

for all we W»(U)

Note that our previous Poincare inquality didn’t subtract the average but worked for
trace zero functions.

Proof. Argue by contradiction, get bounded sequence in WP, use compactness, get LP
function that has average zero, derivative zero, but LP norm 1, which is impossible

1. assume false, let u;, be such that |uy — f ugl;, > k | Dugl| 1,

up—f ug

TonFanl o 80 that [vx], = 1, and [ Doy, <k

2. set v, =

3. vy are bounded in WP so by compactness, get subsequence converging in LP to v € LP
4. |v];» =1 and fv =0

5. checking (v, 0y,¢) = limy e (Vn,, Oz, ) = 0, get v is constant, and zero but this is a
contradiction.

]

1.5 Second-order Elliptic Equations
Reference: Evans 6.1-6.5

Weak solutions, Lax-Milgram Theorem, existence and uniqueness, elliptic regularity, maxi-
mum principles, eigenvalues and eigenfunctions

A second order elliptic differential equation can be written:

Lu=f xzeU
_ (4)
u=0 zedU

with U a bounded open set in R?, f € L2(U), and L a partial differential operator written
either as

Lu=— " 8)(a(x)ou) + 3 bi(x)u + e(x)u(x) =~V - (VuA(x)) + B(x) - Vu+ ofx)u(x)
i,5=1 =1 (divergence form)
Lu=- Zn: a” ()0, 0;u + Zn: bi() O + c(x)u(x)
i,=1 =1 (non-divergence form)

2sometimes things aren’t obvious to me: f v = f V+ Uy — Uy = f v — v,, absolute value is bounded by
flo=v,|<Cllv=vn]p =0
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Definition 1.16 (Elliptic Operator). A differential operator defined above is uniformly
elliptic if there exists 0 > 0 such that for almost every x e U, & e R®

D a(x)€:8; > Ol¢f?
ij

(equivalently (a¥) is uniformly positive definite). We will assume a¥ is symmetric in every-
thing below.
1.5.1 Weak Solutions

Definition 1.17 (Weak Solution to Elliptic Equation). For the above PDE we define
the bilinear form:

Blu,v] = / Y a?dudjv + b uv + cuvdz (5)
U'ij j
for u,ve HY(U). We say that u is a weak solution if Blu,v] = (v, f) for all ve H}(U)

1.5.2 Existence of Weak Solutions

Theorem 1.56 (Lax-Milgram Theorem). Let B : HxH — R be a bilinear map on Hilbert
spaces H that is (1) bounded: |B(u,v)| < C'|u|y|lv|y and (2) coercive: ||u||§{ < CB(u,u).
Then for each f: H - R bounded linear functional, there exists uw € H such that B(u,v) =
(f,v) for allveH.

Proof. linear algebra

1. fix u, v » B(u,v) is bounded linear. By Riesz-representation theorem, get Au € H
such that (Au,v) = B(u,v).

2. A is bounded and linear (linear is easy), bounded: |Au|? = (Au, Au) = B(u, Au) <
Cllu] || Aul

3. A is one-to-one with closed range. |u|® < B(u,u) = (Au,u) < |Aul |u], so |Au| > |u]
4. the range of A is H. If not, get w such that 0 = (Aw, w) = B(w,w) > C |w]|

5. by Riesz-representation, have w € H such that (f,u) = (w,v) for all ve H, let ue H be
such that Au=w

6. B(u,v) = (Au,v) =(w,v) = (f,v). By coercivity, get uniqueness.
[

Theorem 1.57 (Energy Estimate of Bilinear form for Elliptic 2nd Order PDE).
For the bilinear form in (5), there exist positive constants such that

IBu,v)| < o Jul gy ol g

2 2
Bllul%y < Bluyu) +7 ul
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1.5 Second-order Elliptic Equations

Proof. for coercive: start with Poincare, use ellipticity, be wasteful with bounds on coeffi-
cients, use Peter-Paul to get rid of negative derivative term

Boundedness is trivial (coefficients are uniformly bounded (we’re on a compact set) then
we use Holder’s inequality).

Coercive bound:

1. by Poincare (since we have trace zero functions): |u| m <C | Duf ;-

2. | Dul, < C [ ¥ atidudyudz (by ellipticity), and this term is B(u, u)~ [ (bdsuu+cu?)dz
3. | [ (hidyuu + cu?)dz| < b, (| Dul; + 7L Jul}) (by Young’s inequality).
4. just rearrange, make ¢ small enough so that the coefficient of | Du|3 is positive.

Another way to write the second energy is:
lull gz < CUPul gy + [l 2 0r)

This is because HPquq_l(U) = sup, _1 (Pu,v) > HUH%(U) (Pu,u)

HHé(U)
As a corollary, we get:

Theorem 1.58 (Existence of Weak Solution for Modified Elliptic PDE). Let >~
(for 7y in the previous problem), then there exists a unique weak solution to:

{Lu +pu=f nU
u=0 in OU
for feL2(U).
Proof.

1. The new bilinear form is B,(u,v) = B(u,v) + p(u,v);-

2. this is clearly bounded, by the above, BHUHH(} < B(u,u) + v |ul3 = Bu(u,u) - (1 -

7) Jul < By(u,u)
3. by Lax-Milgram, we get a unique weak solution.
O]

Theorem 1.59 (Second Existence Theorem of Weak Solutions to Elliptic PDE
(via Fredholm alternative)). For (4), such that bi € C1(U), the null spaces (solving ho-
mogeneous problem f =0) of L and L* (formal adjoint) have the same (finite) dimension,
call them N and N*. And there exists a unique solution to (4) if and only if (f,u) =0 for
all we N*.

Furthermore, these weak solutions are unique modulo ker L
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Basically, we can solve second order PDEs, except for a small slice of L? removed having
finite dimension. This slice is characterized by solving the homogeneous adjoint problem

Lru =

0

Proof.

1.

let p =7 is above theorem, for f e L?, define L;!f =u to solve B, (u,v) = (f,v) for all
veH].

u solves actual PDE if and only if B(u,v) = B,(u,v) = y(u,v) = (f,v). So B,(u,v) =
(f +~yu,v), that is u = L7 (f +~yu)

rearrange as u —yLlu= L1 f = (I - K)u =h with K =yL;! and h = L' f. So if we
he R(I - K), we have a solution.

claim: K is compact

2 _
(a) Bounded: fulyy < By(u,u) = (g,u) < lgly uly < lgls [ulgy so [L3'g] ) <

Cll,

(b) Compact: let g, € L? be bounded, then by above Kg, are bounded in Hj, by
Rellich compactness, there exists subsequence K g, convergent in L?.

apply Fredholm alternative: (I — K')u = h has a solution if and only if f 1L N(I - K*).
There are two options:

(a) N(I - K*) =0, in which case R(I - K) = H, and so for every f € L2, there is a
unique weak solution.

(b) dim(N(I-K)*) #0, there is a m dimensional subspace of solutions to B(u,v) =0
for all v e H} (called N) and B*(@,v) =0 for all v e H} (called N*). And we can
solve the original for f if and only if (f,v) =0 for all ve N*

]

Theorem 1.60 (Fredholm Alternative). If K is a compact linear operator, then:

1. N(I - K) 1s finite dimensional

2. R(I-K) is closed

3. R(I-K)=N(I-K*)

4. NI-K)=0if and only if R(LI] - K)=H

5. dimN(I - K) =dim R(I - K*)

To remember: K being compact means it is approximately finite dimensional?®, so if we

let T = I - K it behaves like a finite dimensional operator® N(T') is just the range of K

it is the limit of finite rank operators in operator norm
bit is a Freholm operator
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(which is basically finite dimensional), if H was finite dimensional, then, R(T") = N(7*)*
(which is the statement of 3). (4) is redundant.

The existence and uniqueness of PDE can be restated in the language of Fredholm
operators. It says that P: H}(U) - H-'(U) is a Fredholm operator of index 0, that is it
is bounded and the dimension of it kernel is finite and equals the dimension of its cokernel.
That is P! exists if and only if ker P = @.

Theorem 1.61 (Local Solvability of Elliptic PDE). For every xo € U, there exists a
unique weak solution u € H}(B:(xo)) to Pu= f in Be(zo)

Proof.
1. we have shown that |Dul ;. < C(B(u,u) + |u;2)
2. By Poincare, [u] 2 (1)) € Cc [ Dl 12(p. (2y))- By dimensional analysis, C. = Cie
3. Therefore, there exists € > 0 such that 1 - CeCy >0, and so | Du|2(p_ )y € CB(u,u)

]

1.5.3 Regularity

Theorem 1.62 (Interior H? Regularity of Elliptic PDE). If u € HY(U) is a weak
solution to Pu = f € L? with a € CY(U) and b,c € L*. Then u € H?  and for each V € U,
lul oy < CUS 2wy + lul 20))

Note possibly u ¢ H}(U). Also this proof is very long and technical so only the main
ideas are important. This result can be obtained through a parametrix construction using
microlocal analysis..

Proof.

1. Since B(u,v) = (f,v) for v e Hj. Expand B(u,v), move the terms involving b and ¢ to
the RHS, redefine that as f to get (AVu, Vv) = (f,v)

2. set v =0;(x20;u) with x a cuttoff function, and we actually use difference quotients

3. expand LHS, integrate by parts, use ellipticity, Young’s inequality, to ultimately get a
lower bound of RHS as > | xD?u|7, - C' | Dull3.

]

Theorem 1.63 (High Interior H? Regularity for Elliptic PDE). Given a,b,ce C™1(U),
feH™U), then if ue HY(U) is a weak solution to Pu= f in U, then ue H™?, and for all
VeU:

||UHHZ2M(V) <CUf gmry + Il r2ry)

Proof.
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1. induct on m, assume true for m. Fix W eV e U
2. let @ e N* with |a| = m+1, pick ¢ € C° (W), let v = Dp € H}, therefore B(u,v) = (f,v),

3. integrate by parts to get B(a,p) = (f, gp) with @ = Do € H' and f some complicated
thing. But now u is a weak solution to Pu = f

4. by previous result, [@ 2y < C(|f| 2 + ] 12)

5. expanding f, and using previous induction we can control [al;. and |f];. to get
| oy < O gmer oy + |l z2¢ry)s and therefore we H™+3

]

Theorem 1.64 (Boundary Regularity of Elliptic PDE). Given a,b,c € C"*(U), f €
H™U) , U has C™2 boundary, and u € Hy(U) a weak solution to Pu = f in U, then
we H™2(U) and [ul gszry < O gmry + Ul p2ery)

If w is the unique solution, then |[u| gumsa(rry < C | f | g 1ry-

1.5.4 Maximum Principles

Theorem 1.65 (Weak Maximum Principal for Elliptic PDE). If u e C2(U) n C(U)
satisfies Pu <0 in U, with a,be C and ¢ =0, then maxg u = maxgy u

Proof. trivial for Pu = —=Au < 0 (otherwise need to orthogonally diagonalize a). The regu-
larization term is nontrival to come up with: ee**

1. first show true for Pu < 0, assume xg € U such that u has maximum (wlog z¢ = 0), then
Vu =0 and Au <0 at this point.

2. Moreover Pu(z) = —a¥0;0;u. Now claim: a%0;0;u <0

(a) orthogonally decompose A = OAO?! with A diagonal with positive entries. Change
coordinates to y = Oz, in this case: 9,,0,,u(0) = X, ;(9y,0y,u(0))O4 ;0 ;

(b) Then in these coordinates, we get Y. a¥ Oy, ;O, ;(0,, 0y,u(0)), this sum contracts to
just ¥ A;(07 u) > eAu, with £ = min(4;).

3. If Pu<0, then let u, = u + ce®1?

(a) Pee™A = ehem (bl —all))

(b) a't >0, soif A> ||b]_, 67!, then Pu. <0

(c) use above, and fact that as e - 0, u. > 0

]

Theorem 1.66 (Hopf’s Lema). Given u € C2(U) n CY(U) such that Pu < 0 in u with
20, g €U a strict maz in U with u(xy) >0 and x € 0B,(&) for some B,(Z) c U, then
Oyu(zo) >0 (where v is the unit outer normal of B.(Z)).
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Note 0,(zg) >0 is trivial.

Proof. the idea is adding an auxiliary function to still be a subsolution with a maximum
at xo such that normal derivative of the subsolution is strictly negative. The construction
of the auxilarly function is clever: defined it on an annulus, the inner boundary can be
trivially controlled, the outer boundary controlled by having the function vanish, and interior
controlled by weak maximal

1. wlog  =0. Let R = B,(0) \ B,/2(0). Construct a function v such that for some ¢ > 0,
g(z) =u(x) +ev(z) —u(xg) <0 in R and g(z9) =0
(a) Let v(x) = el — e (s0 v(r) = 0), so Pv<0in R for A > 0
i. Pv=e el \(~daliz;z;\+2Tr A+ bix; +c) — ce™”
i, (—4aiiz;z A+ 2Tr A+biz;+c) < —40 |z A+ 2Tr A+ |b]y 2], < —c1Ar+co +csr
(b) since u(xo) is maximal, set 0 < e «< 1 so u(xy) > u(z) + cv(x) on 0B,/
(¢) Lg < —cu(zp) <0in R and g <0 on R (since for inner we chose € small and on
outer v vanishes)
2. by weak maximal principal, ¢ <0 in R, therefore 9,g(zq) >0
3. 0,9(x0) = Ou(xo) +€d,v(xp). Now 0,v(xg) = —2A|x|e > < 0, therefore 9, (20) > 0
[

Theorem 1.67 (Strong Maximal Principal for Elliptic PDE). Let u e C2(U)nC(U)
satisfy Pu <0 with ¢ =0. If there is x € U such that u(x) = maxgu(x), then u is constant.
(the condition ¢ =0 can be replaced by ¢ >0 and maxgu >0 )

Proof. 1. suppose u is nonconstant and attains a max, let M = maxg u, let A={x e U :u(z) =M}
and B=U\ A.

2. pick y € B such that dist(y, A) < dist(y,0U), expand a maximally sized ball around y
contained in B

3. this ball has a point of A in its boundary. Apply Hopf’s lemma, get contradiction
because there will be a larger maximum.

O

Theorem 1.68 (Harnack’s Inequality for Elliptic PDE). If0<wue C?(U) is a solution
to Pu =0 and V € U, then there exists a constant C (depending on V and P) such that
supy u < C'infy u
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1.5.5 Eigenvalues of Elliptic PDE

Theorem 1.69 (Spectrum of Elliptic Operators). The real spectrum of P is at most
countable, with eigenvalues going to infinity.

Proof. X ¢ spec(P) if and only if (P - A)u = f has a unique weak solution for each f e L? if
and only if (by Fredholm-alternative) (P — \)u = 0 has only the trivial solution.

1. let v > 0 such that (P +~)u = f has a solution for all f € L2, then the above can be
written (P+7y)u=(v+ANu, sou=(P+~v) v+ Nu

2. let K =~(P +~)!, this is a compact operator, so we have u = %Ku, so Ku = W’YT,\U

3. we are interested when this has only the trivial solution, therefore when 5 ¢ spec(K)

4. since the eigenvalues of compact operators are at most countable and go to zero, the
spectrum of P goes to infinity.

]

Theorem 1.70 (Boundedness of Inverse of Elliptic Operator). If \ ¢ spec(P), then
(P-X)"1:L?— L? is bounded.

Proof. 1. suppose not, get sequence uy € H} and fy, € L? such that (P — \)uy = f and
lukll 2 2 k| flly (wlog Juel, =1)

2. therefore | fi|, » 0 and by energy estimate HukHHé < C(| felly + lukl,), we see uy are
bounded in H}

3. by Banach-Alaglou and Sobolev compactness, get u € H) such that uy, converge weakly
in H} and strongly in L2

4. therefore Pu = Au® and |ul, = 1, but if A ¢ spec(P), we require u = 0, so we get a
contradiction.
0

For the remainder of this section, assume Pu = —0;(a¥0;u) with a uniformly positive
definite and symmetric.
Theorem 1.71 (Eigenvalues of Symmetric Elliptic Operator). If P is as above, then
the eigenvalues are 0 < Ay < Ay < -+ » oo and there exists a orthonormal basis for L2(U) of
eigenfunctions in Hy solving the Dirichlet problem. (By elliptic regularity, if OU is C*, then
the eigenfunctions are in H*)

Proof. Tt suffices to show that P! is a symmetric, nonnengative, compact operator.

1. P~'is bounded L? — H} (this follows from Theorem 1.70) which by Sobolev imbedding
is compact L? — L2

2this is somewhat nontrivial, but a common trick. The general heuristic is if u,, — u weakly then
B(up,v) - B(u,v) for a bilinear form B
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2. P! is symmetric

(a) pick f,g € L2, then (P~'f, g) = (u,g) = (9,u) = B(v,u) where u and v are weak
solutions of Pu = f and Pu = g respectively.

(b) Similarly, (f, P~tg) = (f,v) = B(u,v), since B is symmetric we get that P! is
symmetric.

3. (PYf, f)=(u, f) = B(u,u) >0

4. therefore, we get an orthonormal basis of eigenfunctions in L?. The Eigenvalues of P!
got zero, therefore the eigenvalues of P go to infinity (must be positive infinity because
P + X is always invertible for A > 0).

]

Theorem 1.72 (Principal Eigenvalue of Elliptic Operator). For P as above A\; <
B(u,u) for all uw € H} with |ul, = 1 with a minimum achieved by the weak solution to
Puy = \yuy. Moreover, the eigenvalue Ay is simple.

Proof.

1. let w € H3(U), let wy be orthonormal basis of L2, write u = Y.7° dywg, this sequence
actually converges in Hj(U)

(a) \;”—Ak—k is an orthonormal basis of H}(U) with respect to the innerproduct B(:,-).

(b) to see this, let u € H}(U) such that B(%) =0 for each k. But this says that
0 = v/ Ak (wg, u)s, but this implies u = 0.

(c) write u = Y pupwy, with py, = B(u, &”—;_k), then we can write dj, = uk)\;m

2. therefore B(u,u) = Y7 diX\e. If |uf, = 1, then Y d2 = 1, therefore B(u,u) > Ay (with
equality if and only if d; = 1).

(a) if B(u,u) = A1, then Y didy = A\ = B(u,u) = Y di g, 50 (A —A1)di =0,s0d =0

for k> 1

3. ifue HY(U) is a weak eigenfunction with eigenvalue \q, then it is either strictly positive
or strictly negative

4. if uq, us are two weak solutions to Pu = A\ju, then there is ¢ # 0 such that f u—cusdx = 0.
Since u; —cus is a weak eigenfunction, by previous step, must be zero, therefore u; = cus,
therefore \; is a simple eigenvalue.

]

Theorem 1.73 (Principal Eigenvalue of nonsymmetric Elliptic Operators). If P =
—-a0;0; + W10; + ¢ with a,b,ce C=(U), ¢>0, then

1. there exists a real eigenvalue A\i of P that is simple with an eigenfunction which s
positive

2. if Xespec(P), then R(N) >\
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1.6 Second-order Parabolic Equations

1.6 Second-order Parabolic Equations

Reference: Evans 7.1
Definition, existence of weak solutions, regularity, maximum principles

Summary of Results:

Data Weak Solution Definition Energy Regularity
feL*(I;L?),ge H} we LA(I;HY), v e L2(I; H T) u(®)] 12 we L®(I;HY)nL?(I; H?),u € L*(I; L?)
Strong Maximal: subsolution s.t. u(tg,zo) = maxg, v | u constant 03;1 Uy, proof by Harnack
Harnack: u>0 then supgey u(t1,x) < Cinfyey u(ta, x)

Definition 1.18 (Parabolic PDE). Given U c R"™ open bounded connect. A parabolic pde

is:
Owu+Lu=f (t,x)e(0,T]xU:=Ur
u(t,z)=0  xedU
u(t,r)y=g t=0
with Lu = - i =1 0i(a05u) + ¥ WOju + cu with a,b, ¢ functions of some regularity, and
Yiie1 a9EE 2 01 for all t,x, & with 6> 0.

Definition 1.19 (Weak Solutions of Parabolic PDE). A function ue L?(0,T; H}(U))
with v € L2(0,T;H-Y(U)) is a weak solution of the above parabolic PDE if (u',v);. +
Blu,v;t] = (f,v);> for almost every t € [0,T] and u(0,x) = g. Where Blu,v;t] is the
bilinear form from elliptic PDE but we fix t.

1.6.1 Sobolev Spaces involving time

Here’s a review of Sobolev spaces involving time. w € L2(0,T; H}(U)) means u(t,-) € H} (U)

for all ¢ € [0,77] *, and [ [u(t, )52y dt < oo.

If we LY(0,7;X) (for X a Banach space) and there exists v’ € L'(0,7; X) such that
fOT pu'dt = —fOT ¢'udt for all ¢ € C3°([0,T];R), then we call u’ the weak derivative.

If we LP[0,T; X ] and w' € LP[0,T; X ], then we say u e W1P[0,T; X]. In this case we get
that for all 0<s<t<T:

u(t) :u(s)+[5tu’(7)d7

which tells us that (1) u e C[0,T; X] and (2) [u] oo r.xy € C lulwispr.x)-

dactually u: [0,7] - H}(U) is strongly measurable, which means it is the almost everywhere pointwise
limit (in ¢) of simple function that take values in H} (U)
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1.6 Second-order Parabolic Equations

If we L2(0,T; H}(U)) and u' € L*(0,T; H*(U)) #, then (1) uw € C(0,7T;L*(U)) with
lulego,rieowy) < C(HUHL2(0,T;H3(U)) + [ 20,011 ))) and (2) for almost every ¢ € [0,T]

% ”u(t)HLQ(U) =2 (u,(t)7u(t)>L2(U)
Theorem 1.74 (Parabolic PDE Uniqueness). Weak solutions to parabolic pde are unique.

Proof. Show energy cannot grow via Gronwall It suffices to show that if u is a weal solution
to the parabolic pde with f =g =0, then v =0.

1. By Sobolev properties 4 || 2y = 2w () u) g2y = —2B(u,u) by definition of
weak solution

2. by same energy estimates as elliptic pde, Hu(t)H?{é(U) <C(B(u,u;t) + Hu(t)Hig(U)), SO
2B (u,u) < =¢ |[u(t) 5200y + 27 [u(®) 7200y < 27 [0()] 201
3. By Gronwall’s inequality, ”U(t)”ig(U) < et ||u(0)|\iz(U) =0
[

Theorem 1.75 (Gronwall’s Inequality). If n'(t) < n(t)e(t) + ¥(t), with n,¢,p > 0,
summable, and 1 absolutely continuous, then n(t) < elo #()4s(n(0) + fot@b(s)ds)

Proof. The idea is to pretend we have equality, solve it, then realize that most of equalities
can be replaced by inequality.

L (e Joe®ity(s)) = e o et (3 (5) = p(s)n(s)) < e Jo Ot (s)
2. Integrate to get e~ Jo #Mdin(s) <n(0) + [ e~ Jo #Odtyy(z)dx <n(0) + [, @(t)dt

3. rearrange

1.6.2 Existence of Weak Solutions

Step 1. Find a weak solution to a finite dimensional approximation to our PDE.

Let wy, be an orthogonal basis in H}(U) and orthonormal in L2(U). For each m € N, we
want to find w,, € L2(0,7; H}(U)) such that

Loy (t) = X0k, d(t)uy, for some d'(t)
2. u,(0)=g

3. (ul,wi) 2 + B(um, wg;t) = (f,wy)r2 for ae. t and every k=1,...,m

#basically, taking a derivative in time loses two derivatives in space, this makes sense for parabolic pde
as yu = Azu
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1.6 Second-order Parabolic Equations

This is easily shown, as we get a first order system of linear ode for which we can solve for
dr(t).
k

Step 2. Provide bounds on approximations to pass to subsequence that weakly converges
by Banach-Alaglou

Lemma 1.1. w,, are bounded in L?(0,T; Hy(U)).
Proof. All the identities come from looking at E(t) = [um(t)] ;2 (1), and computing LNE(t) |20

1. E(t) = 2(ul,,u). Since u,, is a weak solution to finite dimensional problem, multiply
this expression by dj*(t) and sum to get (uj,,tn) + B(tnm,un;t) = (f,un). So E(t) =
2(f,um) = B(tm, um;t)

2. since C ||U(t)H12qg(U) < By, ;) + Co ||u||i2(U) and Young on other term, get E(t) <

£ + N[z + Co 72 = [t [y, rearrange to get:
d 2
7 1D 2wy + CrlumO g0y < 1F Ol 2y + C2 l1m ()] 20

3. by Gronwall, (throw away second term on RHS for now) get Hum(t)Hiz <C(lgl 2y +

’|f’|i2(o,T;L2(U)) (this is a uniform bound in ¢).

4. next use the second term, integrate over time, use uniform bound on |u,,(t)| - to get

2 2 2
HumHH(O,T;Hg) <Cglrzwy + 1 flz200220))
[
Lemma 1.2. u!, are bounded in L?(0,T; H1(U))
1. let ve H}(U) with v = vy +va, ||U||H3 < 1, and vy orthogonal to the span of {wy}. (note
Il ga oy <1

2. (up,,v) = (upy, v1) = (f,v1)=B(tm, v1;t), the modulus of which is bounded by || f(£)]| 12y +
C Nl g2
0

3. therefore |up,| -1 < CUf(O) |2y + HumHH%(U)). Integrate this, use above bound to

2 2 2
get that Hu;nHLQ(O,T;H—l(U) < C(Hf“L?(o,T;L?(U)) + ”g||L2(U))

Step 3. Show that the weak limit converges to the correct thing.

1. relabel subsequences, u,, converges weakly to u in L2(0,7; H}(U)) and u], converges
weakly to w’ in L2(0,T; H1(U)) (showing they are equal is a small exercise)

2. Let v = Yoo di(t)wy(z) € L2(0,T; H}) with dy.(t) smooth (functions of this form are
dense in L2(0,T; H}), so it suffices to test u with v.
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with m > N, we can sum the finite dimensional weak solution condition of u,, with dj(t)
and integrate over time to get: fOT(um(t)’, v(t))2+B(upy(t),v(t);t)dt = fOT(f(t), v(t))odt

. by weak convergence, the same is true with u,, replaced by u*. But this implies that

(u'(t),v) + B(u,v;t) = (f(t),v) for all ve H}(U), and a.e. t € [0,T]"

constructing v s.t. v(7) = 0, then integrate by parts above to get fOT—(v’,u) +
B(u,v;t)dt = fOT(f,U)dt + (u(0),v(0)), but we can also integrate by parts the iden-
tity of u,,, send to infinity and match terms to get (u(0),v(0)) = (g,v(0)), therefore
u(0) =g

1.6.3 Regularity

Theorem 1.76 (First Regularity Estimate for Parabolic PDE). If the coefficients of
L are smooth and don’t depend on t, u is a weak solution to our parabolic pde, then

ess OSJ;I?F Hu(t)”Hg(U) + |l 2o, msm2c0) + 19 | 20,020y € CUS 20,5020y + HgHH(}(U))

Proof. test Galerikin against uj, to control [|u'| .., integrate, to get estimates on [u/] ;2(; 12,
and [uf o, w1y, send m to infinity. Get pointwise weak solution, test against v, move over

to get elliptic pde, use regularity to get bound on ||u -, integrate to get result.

1.

Galerkin approximations satisfy (ul,,u!,) + B(um,ul;t) = (f,ul,), expand B, write
first term as %%A(um,um) = [,; a9 0;ul, 05t

Peter-Paul everything to get |, || 12, terms small, then integrate to get: fOT(u;n, ul,)+

SuPgerer AU (1), um(t)) < C(A(un(0), un (0)) + foT Hf(t)HiQ(U) + [ H?{(}(U))

N 2
. um(0) = g, and A s elliptic, so we get: [ul,, | 120 7.12(1ry) *5WPosrer |Um ||H01(U) < C(||g||H01(U)+

Hinz(o’T;LQ(U)) + |t H2L2(0’T;H5(U))). But u,, is bounded by exactly what we want (from
step 2 of existence).

let m — oo

since (u',v) + B(u,v;t) = (f,v) for all ve H}(U), we have B(u,v;t) = (f —u',v), that
is u is a weak solution to an elliptic pde: f —wu' € L?, therefore u € H? with:

lu(® 20y < CUS =] 20y + 10l 220))

integrate, use above to get |u 2o 7. p2(1ry) < C(what we want)

]

2it is nontrivial that B(um,,v;t) > B(u,v;t)
Pthis is nontrivial to me, my sense is that if this was not true, we can construct d(¢) a bump function and
get a contradiction
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Theorem 1.77 (Higher Regularity of Parabolic PDE). Given g € H>*™'(U) and OF f €
L2(0,T; H*™=2k) fork =0,...,m (with compatibility conditions), then OFu € L2(0,T; H>m+2-2k(U)))
fork=0,...,m+1 (with the expected control on norms).

The compatability conditions are: go = g € H}, ¢1 = f(0) = Lgo € HJ(U), . . . ,
Gm = 0" f(0) = Lgm-1 € HY(U).

1.6.4 Maximum Principals

Theorem 1.78 (Weak Maximal Principal for Parabolic PDE). Ifu e C2(Ur)nC(Ur)
is a subsolution® of the operator (0; + L) with ¢ =0, then maxg, u = maxp,, u®

Proof. 1. first if (0, + L)u < 0: if there is an interior maximum with ¢ < T, then u; = 0 and
by same argument as elliptic pde, Lu > 0, so we have a contradiction. If ¢t = T', then
ug > 0, and we still get a contradiction.

2. if (O, +L)u <0, let u¢ = u—et, then (0, +L)u = (0,+L)u—e <0, so maxg, u® = maxp,, u.
Send € — 00.¢

]

Another variation involves ¢ > 0, in this case subsolutions satisfy maxp,_ u < maxr, u*
and supersolutions satisfy ming, u > —maxrp, u~. The way to prove the first is assume false,
then there exists interior point whose value is > maxp, u* = max(maxr, u,0). It is therefore
maximum, and positive. Then we do the same argument.

Theorem 1.79 (Harnack’s Inequality for Parabolic PDE). Ifu >0 solves (0;+L)u =0
m Up, VeU, 0<ty <ty <T, then there exists C >0 such that

supu(ty,z) < Cinf u(ty, )
eV zeV

To remember order: heat dissipates, so supu(z,t1) > supu(z,ty). Harnack deals with
controlling variation, so we want to bound early peak with later (inverse) peak.

The proof is very long.

Theorem 1.80 (Strong Maximal Principal for Parabolic PDE). If (0; + L)u <0 in
Ur, and u(ty, xo) = maxg,. u:= M for (xo,to) € Up, then u is constant on Uy, .

Proof. idea is to show wu is zero on parabolic boundaries of sets containing our maximum.
This requires setting up Harnacks inequality to conclude M —wu =0 on the boundary.

1. Let (wo,t9) € W € U, let v solve (J; + L)v = 0 in Wy and v = u on the parabolic
boundary of Wy (call it I'r)

2. Claim: v(tg,x9) = M

asubsolution of P means Pu <0

Precall Ur = (0,7 x U, Tr =Up~Ur =U x {t =0} udU x (0,T7] (it’s a cup)

‘u® converges uniformly to w. So if maxp,, # maxr,, then we get u(to,z0) > maxr, u. Let ¢ be small
such that |u® — u| < 2 (u(to, z0) — maxr,, u)
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(a) Note (0;+ P)(u—-wv) <0 and u—wv is zero on the boundary, so the weak maximal
principal says that u <wv.

(b) also the weak maximal principal says v < M, therefore M = u(to, zo) < v(to,xo) <
M

3. v:=M —v >0 and solves (0; + L)0 =0 with zero boundary condition. By Harnack, for
each xpe VeW, 0<t <ty

0<supd(t,z) < Cinfo(ty,2) =0
% 1%

4. therefore v =0 on Wy, so v =M on Wy, therefore u = M on OW x [0,1].

1.7 Hyperbolic Equations
Reference: Evans 7.2-7.3

Second-order hyperbolic equations: definitions, energy estimates, energy-momentum ten-
sor, finite speed of propagation, regularity; hyperbolic systems of first-order equations: def-

initions, existence and uniqueness of weak solution

Summary of Results:

Data Weak Solution Definition Regularity
feLl?’(I:L%),geHj,hel? | wel>(I;H)), v e L2(I;L?), " e L>(I;HY) | we L¥(I; HY), v e L= (I, L?)

1.7.1 Definitions

The hyperbolic PDE I will consider will look for solutions u : Up — R (U c R? open,
Ur =(0,T] xU) satisfying:

(O +Lyu=f (t,x)eUr

u=0 (t,z) € [0,T] x0U
u(0,x) =g
u(0,2) =h

with Lu = - Y 0,,(a 0ju) + ¥ 70;u + cu, uniformly elliptic.

Definition 1.20 (Weak Solution of Hyperbolic PDE). For f e L?(Ur),g € H}(U), h e
L2(U), u is a weak solution to our hyperbolic pde if u € L?(0,T; Hy(U)), u" € L?(0,T; L*(U)),
u" e L2(0,T; HY(U)) and satisfies (u"(t),v) + B(u,v;t) = (f(t),v) for all v e HY(U) and
almost every t € [0,T]. And u(0) = g(0), u'(0) = h.

To remember spaces: bilinear form suggests testing with Hj, this requires u”(t) € HL.
We need to take weak derivatives of u, so u(t) € H} is also needed. In Fourier space, with
L=-A,u(t,&) = cos(||t)g +|&| " sin([¢[t)h. For ue H}, we need g € H} and h € L? (looking
at decay as £ - +o0). Morever, differentiating this in time brings a factor of |¢|, so that u’ € L?
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1.7.2 Existence, Uniqueness, and Regularity

It turns out that if u lives in the above space, then uw e C(0,T; L?) and v’ € C(0,T; H™')
One way to prove existence of weak solutions is via the Galerkin approximation. The
construction of such functions is identical to parabolic pde.

We ultimately get the energy estimate on these approximations u,,(t, )

e ([ gy + [l 2) + 2o 1) € CCUF 2o minsy + 9l + 1722)

Note: this is slightly stronger than we would expect, as u,,, u,, are actually bounded in their
respective Banach spaces

Proof. 1. test against u/,: (u!’,ul.) + B(um,ul;t) = (f,ul))

]
We then pass to a weak limit to get w € L*=(0,7; H}),u' € L*=(0,T; L?),uw" € L?>(0,T; H™!).

After some work it turns out that this weak solution is unique.

We furthermore have regularity results. If %f e L2(0,T; H™*) for k=0,...,m, gnH*™,
h € H™(U), with certain compatability conditions, then %u € Le(0,T; H*m=k(U)) for
k=0,...,m+1. And we can control these norms of u by exactly what we expect.

1.7.3 Finite Speed of Propagation

Theorem 1.81 (Finite Speed of Propagation for Hyperbolic PDE). Ifu is a smooth
solution to Lu = —a'0,,0,,u = ~Oyu (a independent of time), (xo,to) fived, ¢ > 0 a smooth
solution (on R*" ~{zq}) of

a”QmZQm] = 1
q(zo) =0

and Cy ={x:q(x) <tg—t} (0<t<ty), C=Upesc;Cy.

Then if u=u; =0 on Cy, then u=0 on C.

Proof. 1. let e(t) = 4 Jo, uf + a'uy ug, dx, then é(t) will have one term where derivative
goes in the integral, and the second where the derivative hits the boundary, call these
terms I; and I5.

2. I, = -[Ct Uplhyy + AU Uy, g = -[Ct Uty — Oy, (0, Juyd + fact a g vjudS
(a) first two terms give just: — fCt(ﬁxia”)uzjutdx

(b) third term: 0Cy = {q(x) +t —to = 0}, so v; = |Vq|™0,,q, get:

[ 19a7 AV, Yoy uids| < [ [9al ((AVa, Tu) [P (AVq, T) [ udS

a*’ 89%. u@xj u )

|{AVq, Vq) ['/? = 1, so the integral is majorized by [y, |Vq|‘1(u2—f + .
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(c) ultimately: |I1| < C [, [Vullu|dz + 5(uf + aijﬁxiuﬁxju)ldv—“z' (by Young’s inequality
and ellipticity, the first term is bounded by Ce(t).

- a [,=-1 2 4 qii ds_
3. use co-area formula®, I = —3 fact(ut +a ijum)wq

4. Therefore é(t) < Ce(t). Apply Gronwall, get e(t) =0 for all .

1.7.4 Energy Momentum Tensor

Definition 1.21 (Energy Momentum Tensor). For u € C*(R"1), define the energy
momentum tensor as T = 0°udPu — 3mPudu. Where mag = diag(-1,1,...,1), m®? =
My (= Mag), 0% =m*P0g.

Theorem 1.82 (Divergence Free Energy Momentum Tensor). If0u =0, then 9,78 =
0

This is an easy computation, just remember Ou = —9,0%u.

From here, we can see that 9yT% = 0,178, so we if we integrate over space, and apply
the divergence theorem (assuming compact support of u), then we see: 9 [, T%dx = 0 for
all 6=0,...,n+1.

If 3 =0, we have T% = Z(u? + [Du|?), which is our usual energy. If g = j, we have
T% = w,0;u which is sometimes called momentum.

We also have, for every x € R**1, 9,725 = 0, if x is constant, then we have 9, (T*Pxg) =
0, so by the same argument as above, we get conserved (over time) quantities [, 7%z zdx.

It can be shown that 7%z > 0 if and only if® xo > 0 and 2% +---22 < 22 (a vector satisfying
this with respect to our (Minkowski metric) is called forward time-like).

Integrating 9,7z over the region {(t,x) e R¥!:t e [ty,t1]} and applying the diver-
gence theorem gives the relation:

[ T xgdx = [ T xgdzx
t=to t=t1

More generally, if X and 3 are two surfaces in R%*! then we can again integrate 9,7z
over the region between these two surfaces and apply the divergence theorem to get:

/ NaTaﬁxgdx:f NaTo‘Ba;gdx
Eo E1

With N the normal vector of the surface. These quantities are positive definite if and only
if x and N are both forward time-like or both backward time-like.

20, f{q(x)g} F(W)|Dg(z)|dy = f{q(z):r} f(y)dS(y)
Phackwards direction is pretty easy, forwards may be harder
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1.7.5 Systems of Hyperbolic PDE

Definition 1.22 (System of Hyperbolic PDE). A hyperbolic system of PDEs is of the
form:

u+ Y. Blou=f (x,t)eR*"x(0,T]
u=g (z,t) e R* x {t =0}

where u = (U1,...,Up) : R* > R™ f:R* > R™ ¢ :R* > R™, BlYx,t) e M™™(R) for
l=1,...,n. Such that for all y e R*, ¥ y;B7 is diagonalizable with real eigenvalues®.

Furthermore if:
1. B; are all symmetric, our system is called symmetric
2. Y y;B7 have n distinct real eigenvalues, then our system is strictly hyperbolic.

Definition 1.23 (Hyperbolic System Weak Solution). A weak solution to the above
system of hyperbolic PDEs® is u e L2([0,T]; HY(R™;R™)), w’ € L2([0,T]; L*(R™;R™)), such
that for all ve HY(R™;R™):

(u',v) + B(u,v;t) = (f,v)

for a.e. t€[0,T], and u(0) = g. Where B(u,v;t) = [g, Y. BI0y,u-vdx

The method to prove the existence of weak solutions is to first solve a related PDE with
an added Laplacian term with a parameter €. These solutions are called viscosity solutions.
Then we establish energy estimates on the viscosity solutions, which allows us to pass to a
weak subsequence, and show that the weak limit is a weak solution.

Step 1. Prove existence of viscosity solutions via fixed point argument.

1. wish to solve dyu — eAu + Bid;u = f with u(0,x) = n. » g := g°. For each vy,vy €
L>=([0,T]; H') we can solve Oyu —eAu = f — Bi0;v; » via fundamental solutions of the
heat equation, denote the solutions uj and us.

2. Let w° = u§ — u§, then this solves the e-heat equation with forcing term —BJ(v; - vq),
by energy estimates, can get [[u(t)] ;1 < C(e)T2 o1 = va oo (0 77,1

3. force £ small enough to get C'(£)T*/2 < 1/2, so that v — u has a fixed point, denote it
u® (which solves our pde).

4. these viscosity solutions u¢ are unique and uf € L2H3, (u®)’' € L2H?!

Step 2. Establish energy estimates on viscosity solutions

#To remember this, consider constant coefficient case with f = 0, then taking the Fourier transform, we
see that @(t, &) = G(€) exp(—itB'&;). It would be nice if B'¢; was diagonalizable with real coefficients.
Phere we require B; symmetric, in C2. f e HY(R" x (0,1);R™), g e H(R™";R™
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1. wish to prove |[uf(t)| oy + [ (w) || p2re S gl gn + | fll o + 1/ 22

Step 3. Prove the weak limit of viscosity solutions is a solution.

Theorem 1.83 (Solution of Constant Coefficient Hyperbolic System). There exists
a unique solution to u, + Bloju = 0, w(0) = g for g € H5(R";R™), s > & +m, B constant
coefficients. And u e C([0, 00); R™)

Proof. 1. we can see that @(t,£) = e*BOG(&) with B(£) =Y Al

2. Claim: e7*B®) = 52 § e2(2] - B(§)) 'dz for v a contour in C containing the eigen-
values of B

3. Claim: if the contour is circles of radius 1 around eigenvalues of B(), then ||z — B(&)| <

™

4. Therefore |e=#BE| < Cet (€)™, and so the representation of u (taking the inverse
Fourier transform) converges.

]

1.8 Pseudodifferential Operators
Reference: Grigis and Sjostrand 1,3,4

Oscillatory integrals, basic calculus of pseudodifferential operators, parametrix construc-
tion
1.8.1 Symbols and Oscillatory Integrals
Definition 1.24 (Symbols). The space of symbols, S7's(X,RY) (X Copen R, p,d € [0,1],
m e R) are functions a € C(X,RN) such that for all K € X, a, 8 multiindices:

sup 10207 a(x,€)] < € (g)™

(z,£)e K xRN

The best constants form semi-norms® make S;”(S a Frechet space.

To work with symbols, we often need to approximate symbols by rapidly decaying symbols
living in =
Theorem 1.84 (Density of 5= in S7%). For all a € S}, there ewist a; € S such that
a; — a with respect to all semi-norms of S;”gg for all € > 0.

Proof. The idea is to let a; = x(fc)a with x € C§°, 1 near 0. Then a nontrivial fact is that
if (1) a; € S™ are bounded in S™ and (2) converge pointwise to some a (to some arbitrary!
function), then a € S™ and a; - a in S™*¢. O

o« - B|-0
*aly 5 = 5D eyexxry (€)1 920 a2, €)
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Definition 1.25 (Phase Function). A phase function is some p € C>(X x RN) @ such
that for all (x,0) € X x RN

1. o(x,\0) = Xp(z,0) for all X\ >0
2. dp#0
3. Jp>0

motivation is to generalize ¢(x,0) = (x1 — z2) - 6, where x = (x1,22). Homogeneity is
natural, and gives symbol control”. Nonvanishing of the differential allows integrating by
parts. And positivity of the imaginary part avoids exponential growth of e,
Definition 1.26 (Oscillatory Integral). For a symbol a € SZ‘(S(X,RN) and phase function
o, we get the oscillatory integral I(a, p) which can be formally written [ e*@9a(x,0)dd
Note these integrals don’t make sense, as they do not converge. One motivation is to
generalize fourier transforms on tempered distributions. In the sense of distributions, the

inverse fourier transform of 1 is the dirac delta function, so we could write, although the
integral doesn’t make sense:

1 4
Ry g
Theorem 1.85 (Existence of Oscillatory Integrals). We can define I(a,p) € D'(X)
in such a way that agrees with when the integral converges (m < —N) and a — I(a,p) is
continuous.©

Explicitly, a = I(a, ) is continuous if for all € > 0 and u € C§°, there exist A, B finite
sets of multiindicies, K c X, and § > 0 such that Y,c4pcp|a—al, 55 < 0 implies that

[{I(a,¢),u)| <e

Proof. Integrate by parts using an operator with enough regularity to lower the symbol
class. Use density of S= and joint continuity of integration by parts to show the result is
well-defined.

1. There exists L = ¥ a;0p, + X 0;0,, + ¢ with a; € 57, b, c € ST such that Li(e™#) = e
(the real transpose of L)

(a) set @ = |0>Vyp - Vo + Vo - Vap, this is smooth, nonzero for 6 # 0, positively
homogeneous of degree 2 in €, and therefore in Siod

(b) let x(0) € Cg°(RN) be identically 1 near 0, then define L = %(Z?ﬂﬂﬂ?agj@agﬁ
00,P0r;)) + x(0) = L a;0p, + b;0, + c.

(c) @ is nonzero away from zero, so @1 € 572, |02 € 52, 0y, € SO, therefore a; € S°.
Similarly, d,,p € S*, so bj € S172 = S~1 and x € S~ c S!

aRn = Rn N {0}

bif a(x,0) is homogeneous of degree m in 6, then a € S™

“Moreover, the order of the distribution is the smallest & such that m -tk < =N where ¢t = min(p, 1 - 9)
ddifferentiation in @ lowers degree by 1, that’s why we need |6]?
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2. Note L*(au) (for u e C5°(X), a € S7s) belongs to ngg’“t (and is in fact continuous) (for
t =min(p,1-9)

(a) L(au) = aL(u)+ L(a)u, the terms of L(u) either vanish or are in S7-S7, = S7g™

(b) L(a) = a?0p,a+b'd,,a+ca. g;a € S)'5", 50 aldpa e S)'s*. Similarly, L(a) € S0,

ca € S;"g“. So just iterate this.

3. for a € S75, let k be such that m—kt < -N, and define Ix(a, ) € D'(X) as (Ii(a, ), u) =
[ e L*(au)dzdf. (This is a distribution as it has finite order on every compact set,
continuity of L* shows that a — I(a,¢) is continuous).

4. This is well-defined (no matter which k or L we choose® and continuity of L), so we
just define I(a, ) = Ix(a, )

]

Proposition 1.8. We can compute I(a,p) as:
I(a, ) =timy [ €#=9a(a, )x(e)d
DI

for x € S with x(0) = 1.

Proof. This can be used as alternative definition of oscillatory integrals, but note that
a(x,&)x(&e) € S~ and approximate a, so this is essentially the same proof as above, but
more concrete with the approximation.

1. pick u € Cg°(R™), for each £ > 0, [ e?ay(ze)udrdf converges

2. use the same operator L as above, and let k be such that m — kt < =N, then integrate
by parts with L¥. When no derivatives fall on x, we get [ e LF(au)x(e§)dxdE, this
converges by DCT as € — 0, and is exactly what we want.

3. the rest of the terms are of the form e/d(e) f(z,&) for j = 1,....k where d € C§° is
supported away from zero (let’s say By(0) ~ B1(0)), f € S™~ (=)t and II,supp f c
supp u, then we can compute the magnitude of the integral of each of these terms:

. ) . ) m—(k-j)t
e fe“"d(ef)f(x,f)dxdf <&l sup |f(x,§)|gcgﬂ(1+|§|) ’

TESUPD U
1 2
=<lél<z

collecting the exponents, and recalling that m — kt < =N, we see that the exponent of
€ is positive, so as € — 0, all these terms converge to zero.

[]

#A function with no dependence on 8 is in 5(1]70
Pthis is by density of S~
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Definition 1.27 (Critical Set of Phase). The critical set of the phase ¢ is
C,={(,0) e X xRN : Vo = 0}

Theorem 1.86 (Singular Support of Oscillatory Integral). If a € ST5(X, RN) vanishes
on Cy, then I(a,p) is smooth. This implies that singsupp I(a,¢) c IIxC,,

Proof. 1. Let x(x,0) € C¢ have support contained in C, nsupp A¢

2. Let L = iI(é;ZI)Q Y. Og;90p,, then Le™ = (1-x)e'? and the vector field of L has components

in SP,(X, RY) (note ay =0)

3. Then formally (we need to pair) [ e¥adf = [ e*?a(1-x)*dp = [ (L*e**)adf = [ ¢ (LFa)db.
If k is large enough, this converges and is in C™(X) for all m, and is therefore smooth.
O

When ¢ = (z-y)-0, we see that the singular support of I(a,¢) = A:={(x,y) e R": z = y}.
Hueristically: the ‘action’ of the oscillatory integral occurs on the diagonal. So we can
decompose an oscillatory integral into a part near the diagonal and a part away from the
diagonal. The part away from the diagonal is just a smooth function. Another hueristic, is
the only nonsingular action is for 6 near oo
Theorem 1.87 (Schwartz Kernel Theorem). There is a bijection between K € D'(X x X)
and continuous maps A: CF(Y) - D'(X): (Au,v)y = (K,v®@u) v,y

So given a symbol a € 57 (X x Y xRY) and phase ¢, we have above that I(a,¢) € D'(X x
Y'). This is the Distributional Kernel of the operator A, defined as Au(z) = ([ e*?u(z)a,-)
for ue C(Y).

1.8.2 Pseudo-differential Operators

Definition 1.28 (Pseudodifferential Operator). Given a symbol a € S)'s(X x RY) with
X =RN xRN and ¢ =(0,z —y), then if K = I(a,) € D'(R*xR") is the Schwartz Kernel of
A, then A is a psuedodifferential operator.

Eaplicitly, for each u e CP(R?) and v e Cs°(RE), then (after normalizing)

1

(Au,v) = @)

/ei(:"”_y)’aa(aj,y,@)u(y)v(as)dyd@dx

The space of such operators is denoted L7s(R™)

Theorem 1.88 (Mapping Property of PDOs on Cg°). L7':(R") 5 A : C°(R}) -
C*=(R")

Proof. 1. Let x(0) be supported near 0, let

1- X(@) n 0 |
TP+ o= gy 2O (s = 1), + 6,0,

L=x(0) +
then Le' = ¢ and L = S 10y ® S70,, ® S1j
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2. for u,v e C(R™): (Au,v) = (K,u®v) = [ LF(e'?)auv = [ e Lk (au)v.

3. Therefore Au agrees with [ e L*(a(x,y,0)u(y))dfdy (this integral exists if & is large
enough, and is smooth in = (again by increasing k).
]

(This can be generalized to when if (y,6) —» ¢(x,y,0) is a phase function for all ).
Theorem 1.89 (Mapping Property of PDOs on &’). L(R") > A: &'(R") - D'(R")
(really they have a unique continuous extension with this property).

Proof. 1. Define for u e &'(R"), v e C(R™): (Au,v) = (u, Atv)

2. but the distributional kernel of A? is K(y,z) #, so get that At : C§°(R") - C*(R").
Therefore (u, A*v) is the pairing of £’ and C'*, which works.
O

By the Schwartz Kernel theorem, if A € LZ?(;(X ) with symbol a, then A has kernel K4 =
[ el v0a(x,y,0) e D'(X x X). By integrating by parts in 6, we can get that singsupp K c
{z =y} := A(X x X). This gives us that singsupp Au c singsupp u for u € £'(X)
Definition 1.29 (Smoothing pseudo-differential operators). A e L%(X) 18 smoothing
(denoted L=>) if any of the following hold: (1) A is continuous £'(X) - C*(X) (2) K4 €
C>(X xX) (3) A=Op(a) with a € S=

To get better mapping properties (ie mapping on functions without compact support)
it makes sense to consider compactly supported Kernels. This is a little too restrictive,
instead we just require compact support of kernels on cylinders. For example if p € C*°, for
[ Ka(z,y)e(z) to converge, we would like for all y € Br(yo), supp K4 n Br(yo) x X to be
compact. Similar thinking gives the following definition:
Definition 1.30 (Properly Supported pseudo-differential operators). A € L%(X)
is properly supported if K4 is properly supported, that is for all compact K: II,(K x X n
supp(K4)) and I, (X x K nsupp(K4)) are compact®

The picture should be that supp K 4 is contained (locally) in a diagonal strip containing
A(X x X)

If A is properly supported, it maps all the following spaces to themselves: C§°,C>,D’, £’.

By constructing x(z,y) € C*~(X x X) which is identically 1 in a neighborhood of A(X x
X), then if A € L7, we can decompose K4 as Kax + KA(1-x). The first (distribution) is
properly supported, and the second (smooth function) is smoothing.

Theorem 1.90 (Dependence of Symbol of pseudo-differential operator on y). Given
Ace L;’fd(X) (properly supported), there exists o(A):=be S;’;;(X), such that:

1

Au(z) = @)

f G0, 0Ya(0)d0d

2(probably should have complex conjugate?)
Pwhere I, : X x X 5 (z,y) » x € X
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for ue Ce(X).
b is called the complete symbol of A. If A has symbol a, then:

br,€) = e A0S « Y

aeN™ Z|O‘|a'

(a? ;“a(m, Y, f)lyzx)

Definition 1.31 (Asymptotic Sum of Symbols). We write a ~ Y325 a; € S™ if a; € S:?g
where m; N —oo and a - Z?;& aj €Sy

It turns out that given any sequence of a;, there exists a unique a satisfying the above,
modulo an element in S~>°. The idea is as follows:

L. let {ftn}, o & collection of semi-norms for S™+, for each j, construct b; € S™ such
that p,,x(a; —b;) <277 forn,k<j-1

(a) This follows from the fact that every element of S™ can be approximated by
elements of S~ in the topology of S™*¢ for all € >0

i. for a € ST, let x;(0) = x(0/j) where x € Cg°. Then a € S~ then the claim
is that ya € S~ and converges to a pointwise and in the topology of Sg?gg
for all e >0

ii. this follows from: if a; € S™ converge pointwise everywhere to a, and a; are
bounded in S™, then a € S™ and converges in S™ for all m’ > m.

2. Then for each j, ¥ ; ar — by converges in S?g, so a =Y a; —b; works

Here is a way to prove that a smooth function is an asymptotic sum of symbols:

Theorem 1.91 (Converse of Asymptotic Sum of Symbols). If a; € S™i, m; - —oo,
and a € C=(X xRN) is such that

1. for a, 3, K, there exist C, M >0 such that sup, pycxxr~ 020 a| < C %

2. there exists my € N going to —oo, such that for all k, K :
k-1
la - Z aj| < C(O)™
=0
for (z,0) e K x RN
then a ~ 3 a;
The proof of Theorem 1.90 can be broken down into steps. The main idea is to first show

that b is a symbol with the above asymptotic expansion. Then to show that it is the correct
symbol.

Step 1. Show that b(z, &) decays rapidly away from 6 = £.

1. note A is properly supported, e®¢ € C>, therefore b(x,&) is smooth. We can write
(dropping constants):

b(,€) = [ e Oa(a,y, 0)dody
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2. we want rapid decay in &, so it makes sense to integrate by parts in y to get factors of
(0;—-¢&;)71, so it is natural to consider L = —i|0 —&|™1 ¥, (& - 0;)0,,. We need a cuttoff
function around 6 = £. It would make sense to choose (1 - x(|¢ -0])), BUT, we will

£-0)

end up needing (1 - X(W))

3. we split the integral in to the part near ¢ and the part away from &, away from &, we
integrate by parts k times to get the integrand:

€ = 017" (Lra) (1= x) < Ol = 0] (1 + o))+

4. now we use that if [£| > 2 and supp x ¢ By/2(0), then [£ -6 ~ 1+ |¢| +]0]. Then multiply
and divide by (1 + [0])"*! to get the integral to converge as long as k is large enough.
This tells us that this part of the integral is in S=°

Step 2 Control the second integral using the method of stationary phase.
1. Our integral is [X(%)ei(z*y)w*@a(m,y,@)dyd@.

2. change variables to have phase: e7l€Fso, this gives us: A" [[ a(z, z+s, \(w+0))x(|o])e 7 dso
(where |{] = A and & = \w).

3. the integral can be written [ e(/2(Quv)p(y)dy with @ = (_OI _I), y=(s0).

4. by below computation, this becomes:

>

la|<N-1

1 o Y
may oga(r,y,0)|s—y + Rya

5. it can be shown that the remainder has the correct decay for the asymptotic sum to
make sense.

Theorem 1.92 (Method of Stationary Phase). Given QQ a symmetric (non-degenerate)
nxn matriz, u e CP(R"), A e R, then:
N-1 irsgn(Q)

fei’\@x’x)u(x)da:: > (2m)rfre (l(D Q'D >)ku(0)+SN(“ A)
& k! det Q12 \km/2% 24\ ¢ ’

with |S, (u, \)| < C(N1)7IA-N-n/2 H(% (D, Q‘lD))NuH ) for any e > 0.

Hn/2+e(Rn

I will prove the simpler case where () = (_O] _0[)

Proof.
1. Want to compute [ e"**Vyu(z,y)dzdy, by Plancheral, this is ¢q [ e ?*va(&,n)dEdn

2. e-iAzy — (QTW)deif-n/)\
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(a> e—i}xmy — H?:l e—i)xxjyj
(b) ey = [ ei@&ym-izydydy. Let x =u+v, y=u-—v.
(¢) Use fact that eie®}2 = (27 /\)4/2e-im/4=i€*/(2))

3. we get (35)4 [ e T(&, n)dEdn, expand exponential, use fact that [ Zkf\fg,)kﬂ = 57 (O
9y)*u(0,0), then multinomial expansion: (0, - 0,)" = ¥jy- k( )ogoe

4. so we get ()4 Y |aen g 02051(0,0) + Ryu

alg! Y Yy
Control on remainder
1. using |eit - Yo (”) | < t,, we get that the magnitude of Ryu is bounded by:
27 g 1 N+l
— ) : déd
(A) )\N+1(N+1)!/(§ n)" adédn
2. the integrand (modulo constants) is F[d, - ,)V*1u]. Sufficient conditions for the f e
LY(R?) is 92 f € L' for all |a| <d+1

3. Therefore the integrand is bounded by:

(2m)4 o
AFN(N +1)] oz+,6’z<:2d+1 Hax 85(6’93 : ay)Nu”Ll

O

Theorem 1.93 (Product of Pseudodifferential Operators). If Ae L}, B e L)' (at
least one properly supported), then AB € L;’f§+m2 with full symbol:

O'AB(:L',S) N Z a?UA(xaf)Dgo-A(x7§)

aeN"™ Oé!

Definition 1.32 (a#0). If a€ 5], b€ ST3 define a#tb:= ¥, (a!) " O¢aDgb

P60

1.8.3 Elliptic Operators and L? Continuity

Definition 1.33 (Elliptic PDO). A« L5 with symbol a is elliptic at (z0,&) € X xRN, if
a(z,&) > C(&EY™ for x,& in a conical neighborhood of xo,&y. That is for the set:

€o

{(x’f)"f' [ ]

< e, |T— 10| < 03}

Furthermore, we say:
1. A is elliptic at zy if A is elliptic for all (zo,&) € X x RN

2. A is elliptic on'Y ¢ X if A is elliptic for all x € A
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3. A is elliptic of A is elliptic on X.

Definition 1.34 (Classical PDO Operator). a € ST} is called a classical symbol (denote
Sn)if a~ ¥20(1-x(0))a;, where each aj € S™7 is positively homogeneous in 6 of degree
m -7, and x(0) =1 near 0* .

If Ae L™ with o0(A) € ST, we call A a classical pseudo-differential operators, which is
denoted L7}

Since the values of a for fixed x are uniquely determined by 6 such that |0| = 1. We see
that if a(xg,&) # 0, then a is elliptic at xq, &.

Theorem 1.94 (Parametrix Construction). If P € L% 15 properly supported and elliptic
(and p > §), then there exists a unique (modulo smoothing operators) @ € L (properly
supported) such that PQ = QP =1 mod L=>.

Definition 1.35 (Parametrix). The above Q is called that parametriz of P.
Proof.

1. Using a partition of unity, can construct Qg € C*°(X,R") so that for each compact set
K QO(xag) = P({E,f)_l for z e K7 |§| > CK

2. Claim: Qg € S;fg"“
(a) use induction and the identity Qo P = 1.

3. Qo#P =1+ Z‘am(a!)‘l@?QngP, the second term is in S=°*9, call it -7, similarly,
define R=1- P#Qq € S~*° (everything modulo L~>)

4. Now define @, := Qo#(1+ R+ R#R+ R#R#R+ ) € S;’%” then P#(Q), = I. Similarly,
if Qu:=(I+T+THT +-)#Qo, then Q#P =1

5. Qi = Qu#tl = Q#(PHQ,) = Qr. Let Q = Q, modulo 5~
]

Theorem 1.95 (Adjoint of PDO). If A€ L7, then the adjoint A* : Cg° — D' belongs to
L7, has Schwartz kernel: Ka(y,x) and has symbol o4+ ~ ¥.(a!) 1 0¢ Do a(x,€)

Theorem 1.96 (L? Boundedness of PDOs). If A€ L) ; and K4 € &'(R™ x R"), then A
is bounded L? - L2.

Proof.
1. Write A*A=MI-B*B-K with M >0, Be Lg(s, Kel™

(a) For large M, the principal symbol of C' := M — A*A is ¢g := M —|ag|? > 0 (where
ag is the principal symbol of A). ¢y is uniformly bounded above and below.

2the cuttoff allows us to the expression to be smooth in 6 for all § (otherwise we might have terms like
1/6). Again it is only the behavior near oo that is important in this business.
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(b) Let by = ¢i/* ¢ 95, let By = Op(by), then by looking at principal symbols, Ci :=
M- A*A-B;Bye L,{™

(c) goal: find By e L' such that M — A*A - (By+ B1)*(Bo + Bi) e L, 3"
i. this is Cy — By By + ByB; + B{ By, so want Cy — B{ By e L "™
ii. let By have symbol %ClBal
2. if we CF°, then [Aul, = (A*Au,u) < M [uly - | Bully+ [ K] 2 2 [ul; < Clul;
(a) Boundedness of K on L? comes from Shur’s lemma.
O

The above proof is really designed to establish a precise bound, which I didn’t do. But this
proof can also be modified to prove the same thing if we know the seminorms of the symbol
are bounded uniformly in z. There is a much easier proof of this fact for S?,O with symbol
compactly supported in x:

Proof. 1. for u e CF, we have Au(0) = [(€) [ a(x,&)e - drde

2. this is just Fourier transforming the x component of a: [@(&)a(d - &, &)d¢, it now
suffices to show that @(6 - ¢&,&) e L2

3. note since 9%a € L* n L' (compact support), so that ()" @(n,&) € L= for all m € Z.
O]

Theorem 1.97 (PDO mapping on Sobolev Spaces). If A ¢ LZLJ 15 properly supported,
then A: Hp . — H™ is continuous.

There are several variants: if the semi-norm bounds are uniform in x, then we have
H$ — H® ™, This implies the same thing if A’s Schwartz kernel is compactly supported.

Proof. (idea, in reality we have to use a bunch of cuttoffs)
1. (D) e L} , and maps H* - H*"
2. B:=(D)""A(D)" € L) ; is bounded L? - L? by previous theorem.

3. A=(DY"*B(D)*: H* > L2 > L? » H™*
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1.8.4 Change of Coordinates

We can change coordinates and have our symbol stay in the same class, which is useful for
defining pseudo-differential operators on manifolds.

Theorem 1.98 (Change of Coordinates for PDOs). If Ay € L7(RY) with p > 6 and
p+0=1and Kk : R} - RY is a diffeomorphism?®, then we can deﬁne A =k oAo (k1) ¢
L™(RY),s with symbol:

| det K|

a(z,y,0) = a(k(z), k(y), G_l(x’ ¥)9) |det G

where G(x,y) = F(x,y)t, and F(x,y) = fol(axf{)(tl'-f- (1-t)y)dy. From this, we can see that
the principal symbol of A is just:

oi(@,€) = o (k(2), ((K))71)¢E)
Proof.
L. if u € C°(RY), then Au(z) = ¢4 [ el -@-Dbg(k(z), 7, 0)u(x(7))dydo

2. let y = k71(7), get a Jacobian, now the only issue is the phase, which is now (x(z) -

k()0

3. idea: Taylor expand  to write (k(z)—r(y)0 = (F(z,y)(z-y), ) ((z-y), Fi(x -y)).
Then change variables of 8. This requires shrinking to a neighborhood of the diagonal
so that F is invertible.

O

1.9 Important Tricks For Exercises

1.9.1 Things Involving Japanese Brackets

Proposition 1.9 (Integrating on one component). If n € R*, £ € R, a > 1, then
-a -a+1
&)y " de=C{n)™

Proof. (€,7)7% = (£2+(n))=*, let ¢ = (n), then we compute:

[ (2% + %)~ sdm-c’2s2f (—+1) dx
du _

2
letu=ﬁ—2+1 so o = 2,s.oweget:

072s+2‘/ u C2 u-1 I/Zdu_ c 2s+1/
@ -y S

This is fine near 1, far away, the integral is asymptotically w712 which has finite integral
if s+1/2>1. Thereforef (&) > de=C(n)™ O

#this works, and is more meaningul, if the domain and range are arbitrary open sets
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This is the crucial ingredient in the following exercise:
Example 1.6. Let Tu(z,y) =u(0,y) for x € R, y e R*1, then T : H¥(R") - H*1/2(R"1)

Proposition 1.10 (Triangle Like Inequality). For s > 0, there exists a constant C' such
that (z)” < C({z - y)" +(y)")
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2 Harmonic Analysis

2.1 Fourier Inversion, Plancherels’s Theorem, and Other Basics
Reference: Christ 1.1-1.8

Definitions of Fourier transforms, LP facts, convolution, approximate identities, Plancherel’s
theorem, tempered distributions, Poisson summation formula

2.1.1 Fourier Series
Let T4 = [0, 27]%.
Definition 2.1 (Fourier Series). For f e LY(T4), f(n) = (2m)~¢ [y f(z)e ™ forneN.

This is funny convention for our class, here is a table

Space Fourier transform Inverse Fourier Transform | Plancheral Constant
R | (O = foue ™ f@)s | () = @m) fou T | 15 = ) [TT;
T | f(n):= @) frae ™ f(z)dz | f(x) = Ty f(n)e™ |£],. = @m)- |15

The only thing to remember is in R, F[e **/2] = \/2me~¢"/2, so @ 2*/2 = (27)4/2¢-€/2, Therefore
the constant for the inverse Fourier transform must have (27)~9. Since He—m2/2” ) = VT,

we can quickly recover the Plancheral constant. For Fourier series, just let f(x) = e, then
constants are easy to recover.

Theorem 2.1 (Plancherel’s Theorem). For f € L?(T?), ﬂ’; = 2m) || f| 2 and f =

Y,ezd [(n)en e (in the sense that Y, fe™ converges in L? norm to f)

Proof. By computation e, := (27)~%2¢i"? is an orthonormal set. By the Stone-Weierstrauss
theorem, it’s span is dense in C°(T?), and by measure theory results, its span is dense in L2.
Then by results about orthonormal dense sets in Hilbert spaces, these results follow. O

2.1.2 Fourier Transform

Definition 2.2 (Fourier Transform on L'). For f € L'(RY), define f(€) = [ emiw¢ f(x)da
It is easy to see that™: L' - L® n C° The inverse Fourier transform is F'g(¢) =

(2m)™ [ g(&)e*de.
Another way to remember all these constants is to remember the unitary Fourier trans-

form F,[f](€) := [ e"2miwt f(€) = F(2r€). In which case all constants are 1.

Lemma 2.1 (Plancharel’s Theorem for L!n L2). For fe L' n L2, | f|3 = (2m) Hsz
Proof.
1. prove for dense subspace V.

2. for feV, let f; = f(tx) (will send ¢t - o0)
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2.1 Fourier Inversion, Plancherels’s Theorem, and Other Basics

w

Nl =t 1A

if ¢ large enough , use Plancheral for Torus: || ;|3 = ca X | Frfe(n)]?
Frfe(n) = 2m)~? [ eim f(ta)dr = (2nt)*Frf(n/t)

therefore || f|3 = cgt=2 ¥, | Fr f (n/t)[?

AR AR

~

the term on the right is the integral of a simple function approximating |f(£)[?, and
we can apply the dominated convergence theorem if f(£) € L2. If we assume f < (¢ )_d,
then we are done.

8. the dense subspace is C§°(R?) (this seems like overkill, but oh well).
[

the idea is to use a scaling argument to reduce to the case of Plancheral on the torus.
This immediately requires compact support. Following our nose, we get a Riemman sum,
which may not converge, we can force it to as long as it is dominated by something decaying
sufficiently.

Theorem 2.2 (Density of C°(R?) in L?). Cg*(R?) is dense in LP.

Proof. 1. For f € LP, by a dyadic argument, get a sequence of simple functions that
pointwise increase to f (wlog f >0).

2. By the dominated convergence theorem, they converge in LP to f.

3. Next approximate the characteristic functions by C{ functions. This is by regularity of
the measure (get a compact set below and open set above), then use Urysohn’s lemma.

4. Next approximate these continuous compactly supported functions via mollification by
smooth compactly supported functions, apply Young’s convolution inequality to get

final result.
O

We therefore have a continuous linear operator on a dense subspace of L?, so we extend
it to L? (this is a general fact about densely defined bounded operators on complete spaces).

Theorem 2.3 (Approximation of Identity). An approzimate identity sequence is @, € L
such that (1) [ ¢ =1 for alln (2) [en], <C (3) [upe eaz) >0 asn— oo for all e > 0.

Then (1) if f € C3, then ¢, + f converges uniformly to f (2) if f € CY, then ¢, * f
converges uniformly on compact sets to f (3) if feLP (pe[l,00)) then @, * f converges to
fin LP

This greatly generalizes the usual mollification family.

Theorem 2.4 (Plancherel’s Theorem for L?). There exists a surjective bounded linear
map F : L? - L? (which has the explicit formula above for L') such that | f||, = (27)~4% | F f],
and

R—
2700

_ L i€
Hf (zw)d[ggae Frde
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2.1 Fourier Inversion, Plancherels’s Theorem, and Other Basics

Proof. This operator comes from the fact that it densely defined, so it has a unique extension.
To show it is onto, it suffice to show that if (F £, g) = 0 for all f, then g = 0, use adjoint of the
Fourier transform to get this. To show last thing, compute this norm explicitly by writing

1f=gls = 1£15+ lgllz - 2(f,9). O

2.1.3 Convolution

Theorem 2.5 (L* convolution bounds). If f € L', g€ L?, then | f * g| ., <[ fl, lgl,

Proof. Use duality: |[f*g[, < (f*g,h) for h e L?. Expand the integral, use Holder’s
inequality. ]

This is just a special case of:
Theorem 2.6 (Young’s Convolution Identity). If f e LP ge L9 and % + % =1+1, then
1 =gl <71, 9l

Theorem 2.7 (Fubini-Toneli). If f(z,y) is measurable with respect to o—finite measure
spaces, then taking absolute values we can integrate in any order. If any are finite, they all
are, and we can drop the absolute values.

I always forget that in absolute value, everything exists.

Definition 2.3 (Radon Measure). A complex Radon measure is such that |u| is (1) finite
on compact sets (2) outer reqular on Borel sets and (3) inner regular on open sets.

Definition 2.4 (Convolution with Radon Measure). Let u be a complex radon measure
and f € CO, define p+ f(x) = [ f(z - y)du(y)

Theorem 2.8 (Characterization of Convolution Operators With Radon Mea-
sures). If T is a bounded, linear map C° (R") - CP(R") that is invariant under trans-
lations, then T'f = f * p for some complex Radon measure.

The proof relies on the Riesz representation theorem.

Theorem 2.9 (Riesz Representation Theorems).

1. (Hilbert version) For Hilbert space H, for each u e H*, there exists a unique f € H
such that for all ¢ € H, u(p) = (u, ) (and |1, = |ul,.).

2. (C? dual on LCH space) If € (C3(X))* is positive for X a locally compact Haus-
dorff space, then there exists a unique reqular Borel measure p on X such that for all
peCiX), then A(f) = [ fdp(x).

3. (C°, dual on LCH) If A € (C°(X))* is continuous, then there exists a unique
complex countably additive Borel measure p such that A\(f) = [ fdu for all f € C°(X)

Convolution will add additional regularity.

Proposition 2.1 (Covolution adds regularity). If f € C' and g € L', and f,V[f € L*>,
then f % ge C?, this can be iterated.

If feL' and g € L™, then f » g€ CY (this uses that translation is continuous on Lt)
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2.1 Fourier Inversion, Plancherels’s Theorem, and Other Basics

Theorem 2.10 (Basic Properties of Fourier Transform). These are all obvious, the
only one worth remembering and not deriving every time:

1. LeGL(n), f e L'(R"), then F[f o L] = (det L)*F[f]((L*)"' 0 &)

21132
Theorem 2.11 (Fourier Transform of Gaussian). For f.(z) = e (R(z) >0), then

Proof.
[

To remember, the constant can be recovered quickly by computing ]?(O) The reason z
goes to the denominator is that as z increases (assuming it is real), f, becomes more localized
— less regular — slower decay in Fourier space - z in denominator.

2.1.4 Tempered Distributions

Definition 2.5 (Schwartz Function). f is a Schwartz function (S(R™)) if f is smooth,
complex valued and for all a, 3 € N*, (x)* 0P f is bounded.

Theorem 2.12 (Fourier Transform on Schwartz Functions). The Fourier transform
1s a bijective homeomorphism on Schwartz functions, mapping them to themselves.

Definition 2.6 (Tempered Distributions). A tempered distribution is a complex valued,
continuous, linear map on S(R™).

Note that this is strictly contained in distributions. Tempered distributions are ‘nicer’
than distributions.

The Fourier transform maps tempered distributions to themselves and it is a homeomor-
phism. Where (Fu, @) = (u, Fp) for ueS" and p € S.
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2.1.5 Poisson Summation Formula

Theorem 2.13 (Poisson Summation Formula). For f € S(R):

> f(k) =3 f(k)

keZn keZm

(where f(g) = [ 2™z f(z)dx)

As a consequence (not rigorous), letting f(y) = 0(z —y), we have:

Y et = N §(x - k)

nezm keZn

Proof. Fix f €8, define g:[0,1]¢ - C by g(x) = ¥,,cze f(xz +n) (this is a periodic function.
By the inversion formula: g(x) = ¥ jcpq €27k f[o,1]d g(y)e2mWkdy. g(0) = ¥, eza f(n). And:

9(0) = > f[o o

keZd

> fly+n)e™hdy = fRdf(y)e‘Q”"y""dy = 3 f(k)

nezZd kezd kezd
(second to last equality requires justification) O]

trick: define periodic function from f (not scaled but repeating). Evaluate periodic func-
tion at zero, use fourier inversion, and clever tiling to get integration over entire space.

Using the usual Fourier transform, Poisson summation becomes: ¥,,.z4 f(27n) = (21)¢Y,,cz4 f(n).

The Poisson summation formula can also be written functionally (back to unitary ft) as
Ynezd f(n+x) =Y, 742 f(n). In our usual fourier transform, the Poisson summation is

Y ez f(x+2mn) = (27) 4 Y pa €% (k)
2.1.6 List of Useful Fourier Transforms
Here are useful, or nontrivial, fourier transforms:

1. Gaussian: e~*°t/2 has FT (QTW)CW@‘EQ/(%)

—d+1

2. Poisson Kernel: e~#l has IFT 7~% T(ZL) (12 +|2|?)™2" (where € € RY)

(a) this is used to solve (92 + V)u(t,z) =0 in R*! and u(0,z) = f.
3. 10 (2m)45(€)

4. pv(1/x) » —imsgn(§) (d=1)

- _

5. logla| = 13

216 (v) (care is need to understand 1/[¢| as a distribution)
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2.2 Convergence of Fourier Series

2.2 Convergence of Fourier Series

Reference: Christ 3.1-3.5, 3.7-3.8

Decay of Fourier coefficients, Rademacher functions, Khinchine’s inequlaity, uniform and
pointwise convergence of Fourier series, almost everywhere divergence (Kolmogorov theo-
rem), LP norm convergence, almost everywhere convergence, Wiener’s Tauberian theorem,
Riesz-Thorin Theorem

Theorem 2.14 (Summary of Basic Fourier Mapping Properties).

Lt - LenCY,
L2 — L?
S — S
S’ — S’
(Lip)eomp | = | () L2n (&) L
(Aa)comp — <£)_a Loo
Ch - | (O (L)
Ck - <£>n+1+k I,
Lr (pe[1,2]) |- LY
Ao(T) (>1/2) | > (Z)

It is hard to keep everything together, but here is yet another attempt at a summary:

regularity in base space leads to decay in Fourier space, but the details are funny.
e the preserved spaces are S, 8, L? (once you uniquely extend the Fourier transform)

e For pe[1,2], L7 is mapped boundedly (Hausdorff-Young) to L¥’ (but it is not surjec-
tive).

e For pe(2,00), the Fourier transform may not even live in L¥'

e L! not only goes to L*°, but also C? and decays (Riemann-Lebesgue). But it can decay
arbitrarily slowly ® and is not surjective onto this smaller function space.

e On the torus, if p > 2, then LP(T?) c L?(T%) c L*(T¢). So, by the above, LP(T%) will
be mapped boundedly to £°°(Z4) n(2(Z%) = (2(Z4). If p increases, we can still only say
that LP functions are mapped to ¢? sequences (Kahane).

2.2.1 Decay of Fourier Coefficients

Theorem 2.15 (Fourier Decay for Cf). If f € C§(R"), then (&Y F e L2nL~. This
implies f = O([¢|™*)

Proof. |€12|F()I? < Tjaper [€9PIF(€)[2. Each term on the right is |(i€)* F(€)[2 = |F[0* £1(€)

0°f € Cy c L' n L2, therefore the Fourier transform is in L* n L2, so integrate both sides to
get the result. O
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Theorem 2.16 (Regularity of Fourier Decaying Function). If T = O(g[F=4-1), then
feCk. A stronger statement is that (f)kf € L' implies f e Ck

Proof. For each |o| < k, (i€)*] € L1, therefore L® 3> F1[(i€)kf] = 9> f. Note that 8 f always
exist as weak derivatives, but then we see that they are in fact bounded functions. O]

Definition 2.7 (Lipschitz Continuous). f is Lipschitz if sup,., |f(2) - f(y)llx —y|™* < oo

1

Note that this is a uniform bound. Also Lipschitz functions are L;_,

distributions

so they are tempered

Theorem 2.17 (Fourier Decay for Lipschitz Functions). If f is Lipschitz with compact
support, then f=0O(&™) and (§) f € L?
So Lip c H!

Proof. (Proof of the second statement) Assume d =1 Idea: f is basically C*, so F[0,f] =
1€ f € L?. But derivative doesn’t exist, so need to consider distributional derivative.

1. For pe8, [ fo'=limp o [ fwd:r = limy,o [ ng(m)dx

2. let fp, = w, | falleo < [ sp> by the Banach-Alagou theorem, get subsequence to
converge weakly to g € (L')* = L*. Since g has compact support, g € L2 n L n L*°

3. therefore f’ = g (in distributional sense). Let 1 € C§° be 1 on the support of f, then
[ gne-=tda = [ F(2)(i€)e-5da = i€ ]

4. since g€ L2, Ge L2, s0 ilf € L?
O

This is the edge case of Banach-Alaglou, bounded in L* allows weak subsequence. But
bounded in L! probably doesn’t? Also note that we proved that every Lipshitz continuous
function has a weak derivative in L!

Theorem 2.18 (Banach-Alaglou). If X is a normed vector space, then the closed unit
ball in X* is weakx compact. If X is separable, then the closed unit ball is sequentially weakx
compact.

A conclusion of this is that if f,, € LP with 1 < p < oo, is bounded, then there exists f € LP
and a subsequence such that (f,,,g) = (f,g) for all g e L¥'

Definition 2.8 (Holder Continuous). A, consists of all f such that sup,., |f(z)-f(y)|lx-
Y|m* < oo with 0<a <1

Theorem 2.19 (Fourier Decay for Holder functions). if f € A, with compact support,
then f = O([¢]™)

Trick is break integral translation — translating a function only scales the Fourier trans-
form by a modulus 1 complex number.

Proof. (Same proof for Lipschitz functions).

L f(©) = [ e f(a)de =14 [ e f(a)da+} [ R fa v 1) da
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2. e =1, 50 [F(©)| < [ |f(x)  f(a+ £5)lda

3. by compact support of f, and [¢| > 7, we can bound this by C' | f] £

This bound is sharp:
Example 2.1. If f(z) = X2, 27%%e2" @ then f e A, but (k)* F(k) =1 for infinitely many k.
Theorem 2.20 (Riemman-Lebesuge Lemma). If f € L1(R?), then |f(£)| = 0 as [¢] » oo

Proof. Same idea as A, Fourier decay, but use continuity of translation with respect to L!
norm®.

L f(&) = [e=f(x)de =13 [ e f(z)dx+3 [ ei(“ﬁ)gf(x n %)

2. combine, take absolute value, get: [f()[ <[ f(z) = f(z +0t)] 11 (gay, with 6 = 7¢/|¢] and
t=1l¢lt

3. This goes to zero.

Proposition 2.2. The Fourier transform does not map L' — C° surjectively.

Proof. 1f it was, then it is open (by the open mapping theorem) and injective (by fourier
inversion theorem), so it’s inverse is bounded. So there is C' > 0 such that |f];. <C Hf” o

But this is impossible, let f; = e-(+le*/2 and send t — oo. O

This is a trick to disprove surjectivity for injective bounded maps: if T': X - Y is

a bounded, injective map, then surjectivity implies existence of C' > 0 such that |f]y <
C|Tf|y forall feX
Also the coefficients of an L' function can decay arbitrarily slowly:

Theorem 2.21 (Sharpness of Riemman-Lebesgue Lemma). If g(§) — 0 as || - oo
and be continuous and positive, then there exists f € L' with |f| > g

Theorem 2.22 (Hausdorff-Young Inequality). For p € [1,2], the Fourier transform is
a bounded operator LP — LV

This follows immediately from the Riesz-Thorin theorem.
Remark 2.1 (Some Remarks About Hausdorff-Young).
1. If F: L™ - LP is bounded, then r =p' (follows by a scaling argument)

2. 1t is enough to show F : LPt — LP2 (don’t need to show bounded), and apply closed
graph theoremb.

#this follows easily by approximation by C§° functions
Palthough it is easy to show the end points are bounded
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3. if p>2, then F(LP) ¢ L¥" (H-Y is optimal on LP spaces)
4. pe[1,2), F:LP - LV is not surjective.

There are two tricks to showing counter examples to Fourier mapping properties (1)
scaling (2) Gaussian with a scaled parameter

Proof.

(3 boundedness failure) Let fy(z) = (012 then |f;] is independent of ¢, so | fi, is con-
—_— —~ d

stant. While f;(£) has a term (1 +4t)~%2. Taking absolute values, we get ‘ftHZ > C’(t)d_%.

If p>2, then ¢ <2, and this quantity grows with ¢, so HﬁHq <C ||ft||p cannot be true.

(3 mapping failure) assume true, use duality:

L. pick feLr, |fl,<1,p>2 g=0p, ﬂ‘p = Sup”quzlffg. So we want to prove the
functional £; € (L7)*, g~ [ Fg is bounded.

2. for each fixed g, |¢;(9)| = |/ fol = |/ fai <[, < o0

3. by uniform boundedness principal, we get ||{;|| are uniformly bounded, but this is
HJ?H 1o and so we get that F is bounded L? — L%, which is a contradiction

(4) Assume false, use the open mapping theorem to get a constant C' such that | f|, < C Hﬂ "

Let f, = e-(1+i)lef*/2 o see that no such C' can exist. O

Theorem 2.23 (Uniform Boundedness Principal). If T is a family of continuous maps
X =Y on Banach spaces* that is pointwise bounded (supp.r|F(x)| < oo for each x € X),
then it is uniformly bounded: supp.p | T .y < 00

2.2.2 Rademacher Functions and Khinchine’s Inequality

Definition 2.9 (Rademacher Functions). Define r,(z) = Yi, Lp,, (2)(=1)**D  with
D, the k™ dyadic interval of length 27

Proposition 2.3 (Basic Properties of Rademacher Functions). r, are orthonormal
in L2, but are not complete. This is because riry =0 but is orthogonal to all r;.

If you index on n > 1, these are i.i.d. mean zero random variables on the measure space
[0, 1] with Lebesgue measure.

Theorem 2.24 (Khinchine’s Inequality). For c € (2, for all g € (0,00) there exist Cy >0
such that:

Oq_l HZCnTnHLq < ”0”82 < Oq HZCnTnHLq

If f =¥ cnrn, then |[f] > = [¢] 2, and this theorem says | f] L, ~ [ ]

&the range can just be a normed vector space
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Proof. Idea: bound above by even LP, expand the sum, use independence of Rademacher
functions

1. choose an even integer, 2p, greater than ¢, since | f[, <[ f[,,, it suffices to bound | f|,,

2. Hngz = [ frfrdx = [ (X E.1)P (X carn)?, recall how to expand this to get:

oo

p 1 P
2 _
”f”Qz = Z H Cn;Cm; [0 H rni/r.mjdw

niyenp=1 i,5=1 2,5=1
mi,...,mp=1

3. since r; are mean zero independent random variables, for each n;, m;, the integral is:

p p

H E[Tmrmj] = H Ons=m,
i,5=1 t,5=1
this is zero unless n; = m; for ¢ = 1,...,q. If we fix n;, then we can rearragne the ¢

entries of m;, so we have p! terms which are nonzero.
2 2
4. 50 || fllyy =P Em et Ty lon, P = D! ez
]

Theorem 2.25 (Kahane’s Theorem). If a € (2, there exists f € L=(T) such that |7 (n)| >
lan| for all n. Furthermore there exists f € Moo LT with |f(n)| = |an|

Since L? — (? and ¢? - L? by forward and backwards Fourier transform, it would be nice
if L1 — (>

Proof. Idea: let f be the inverse Fourier transform of a but with signs that are i.i.d. mean
zero random variables. The LP norm has finite expectation, so is almost surely finite. (of
weaker statement).

1. Fix p, consider f,(z) = f(z) = ¥ aprp(w)e®™, with w € [0,1]. |f(n)| = |an]-
2. [f5,dw= [[|flpdwdz < C [ ||la|}, < oo by Kitchine’s inequality

3. So for almost every w € [0,1], f, € LP.

4. take p, - oo, take intersections of these full measure sets

]

2.2.3 Uniform and Pointwise Convergence of Fourier Series (Dirichlet Kernels,
Cesaro means)

Here is a brief summary:

e Fourier series need not converge, they are funny. This is largely because Fourier series
can be written as convolutions with certain functions (Dirichelt kernels) which just
miss being an approximate identity sequence (unbounded L! norm).
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e pointwise Fourier series convergence can fail for even C° functions

— If we add up our series in a funny way (Cesaro means), then we can get uniform
convergence in C of trigonometric polynomials.

e there exists an L' function whose Fourier series diverges everywhere (Kolmogorov)

e pointwise Fourier series convergence holds at zg if [ %dw < oo for some a (f(xg)
if f is C0).

e Fourier series uniformly converge for f € A, (so there is a transition from C° to C1).
e Fourier series of functions in LP (p € (1,00)) converge in LP.

— In fact, Fourier series converge almost everywhere for f € LP, p € (1, 00] (Carleson),
but this is very hard to show.

Definition 2.10 (Dirichlet Kernel). The Dirichlet Kernels are defined Dy (z) = Y0, eine =
sin((N+%)z) a
sin(z/2)

Proposition 2.4 (Purpose of Dirichlet Kernels). For f € L'(T?), then Dy f = Sy(x) =

YN v F(n)ee (where the convolution has a normalizing factor (2m)~!

Note that in Fourier space, Dy = I(-n,n]. By the Poisson summation formula, we have
that ¥,z €% = 21 Y.,z 02.n(x). So the Dirichlet kernel converges, in some sense, to a peri-
odic delta distribution.

While [ Dy = 2m, |Dy|, = oo so it is not an approximate identity sequence. (It also
fails to have a support that is shrinking).

Theorem 2.26 (L' norm of Dirichlet Kernel). Dyl ;. > clogN

Theorem 2.27 (Failure of pointwise convergence of Fourier Series). There exists
feC%T) such that Sy(0) doesn’t converge.

Proof. idea: use UBP, get contradiction by duality argument and unbounded L! norm of
Dy

1. let £y be the functional £y (g) =S,(0) = [ g(0-y)Dy(y)dy.

2. assuming statement is true, {y are pointwise bounded, therefore by UBP, they are
bounded uniformly

3. But [€n] =supgecog) o1 2 (1) = [Dn ]y = o0
O

Theorem 2.28 (Pointwise convergence of Fourier series). If f € L'(T%), z0€ T, aeC
and [ |f(zo) - al/|x - xo|dx < oo, then Sy f(z0) = a

areally they are defined this for  # 0 and 2N + 1 for x =0
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Proof. idea: act like normal approximation of identity, rewrite integral as fourier transform
of L' function, apply Riemman-Lebesgue Theorem

1. WLOG, 20 =0, Sy(0) —a=(27)"" [ Dn(y)(f(0-y) —a) (since £ D,, =1)
2.

sin((5 + m 5Dy _ o=i(F+1)y
S osw ) -w= [T Gy = [T ) - ay

B l ei(%ﬂ)y(f(_y) - a)l[—ﬂ',ﬂ’] B eii(%ﬂ)y(f(_y) - a)l[—ﬂ,ﬂ]
2 (/ sin(y/2) [n sin(y/2) )

1 ~ N ~ N
=5 (M5 + 1)+ (-5 -1))

with h(z) = 1 r.n)(F(-y) - @) (sin(y/2)) "
3. by hypothesis, h € L, so E(N) — 0 (by the Riemann-Lebesgue lemma).
]

Theorem 2.29 (Uniform Convergence of Fourier Series). If f € A,(T), then [Snf - flco <
Co [l f]5, N=1og(N)

This is very important, the proof is rather lengthy, but the summary is short. This is
improved with Cesaro means.

Proof.

1. wlog, show |S,(0)| - 0.

2. 8,(0) = 5 [T ()5 da with M =5 +1.

3. split integral into two parts, the first: f i</ (2) 211?1((;”/326)) dx, this is bounded by Cf\xlsé |f(z)]|z|tdx <
C Jages 217 1 f [a, dz = C S, 0°

4. second term: flfvlzég(x) sin(Mz)dx. Split sin(Mx) into exponential terms, it suffices
to look at only one (where we use the shifting trick):

™ ) 1 ™ ) 1 T )
[5 g(x)eM*dy = 5[& g(a:)elM””dx—§/(; g(x+ M) eMrdy

]\/I

5. we get a lot of integrals, each can be handled either trivially, or using the Holder
continuity condition.

]
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Definition 2.11 (Cesaro means). For a function f on T, let Sy(z) = Ny f(n)einz,
define the Cesaro mean oy f(x) := 5 Yo o Sn ()

Theorem 2.30 (Facts about Cesaro Sums).

1. onf(x) = Kn*f, with Ky the Fejer Kernel Ky(z) = 2 XN, D, = (N+1)*1M

sin?(z/2)

2. In Fourier space, we have:

1-42L jnj< N

N+1
0 else

KN(’H,) :{

3. The Fejer Kernels form an approzimate identity sequence, therefore:

(a) feC? implies that on f converges uniformly to f
(b) f e Lr implies that o f converges in LP to f

4. [ € Ao(T") implies that |onf ~ flco < Co | flx, N~ (here the Holder norm includes
the supremum norm,)

Proof. To show ox(x) is an approximate identity sequence, the only nontrivial thing to show
is that f|x|>5 on(z)dx - 0. Replace N with n -1, use that sin(x/2) < cz:

fll on(z)dr < Cn™ [;dex =ntel-71) =0

]

Theorem 2.31 (Fourier Series Convergence of Bounded Variation Functions). If
feC%T) and has bounded variation, then Sy f — f uniformly.

This can be weakened to f € CO(T) and f(n) = O(jn|™!) (which bounded variation func-
tions satisfy).

2.2.4 Almost Everywhere Divergence
The construction of an L! function whose partial series diverge everywhere relies on the
following;:

Theorem 2.32 (Kronecker’s Theorem). Ifty,...,t, € R are such that u;t;ul are linearly
independent over the rationals, then for all € and z; € C with |z;| = 1, there exists n € N such
that:

|627Tint]‘ _ Zj| <e

forallj=1,...,mj

(This seems related (and probably provable by) to the Poincare recurrence theorem).
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2.2 Convergence of Fourier Series

Proof. if not, get f supported on a ball that avoids integer periods. Average over it, taking
Fourier transform, apply dominated convergence theorem to get contradiction (not super
intuitive).

1.

assume false, get zo € T™ and gy > 0 such that e?™™ never lands in B.(z) for n € N
(where t = (t1,...,t,) € R™)

let f e C* be supported in B.(z) with f>0, [ f=1.
f(nt) = Ypen fk)e2mntEk take average, interchange sums:

N . N
N—l Z f(nt) — Z f(k,)N—l Z €2m‘nt-k
n=1 n=1

keN™

apply dominate convergence theorem (for sums) to the RHS

(a) it is clearly ¢!
(b) for fixed k, have N-1 Y e2rink < N ‘lﬁ (the denomoniator is never zero by

hypothesis®) which goes pointwise to 0 for & # 0.
(c) by DCT, get f(0)=cq [ f
LHS is zero by hypothesis and support of f, so we get 0 = [ f, which is a contradiction.
O

Another Kernel is used to get a variant of partial sums:
Definition 2.12 (Vallée Poussin Kernel). Define Viy = 2Kony — Ky (Kn are Fejer
Kernels). These have the properties: (1) Vy(n) = 1 for |n| < N +1 and V,(n) = 0 for
IN|>2N +2 (2) Vi is an approzimate identity sequence (|Vn|, <3)

Figure 1: Fourier Coefficients for n = 3. Green and Red are Fejer kernels, and Black (the
weighted sum) is the Vallee Poussin kernel.

it is zero if and only e

to 1

27tk — 1 if and only if t-k € Z if and only if ¢; are linearly dependent with respect
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Theorem 2.33 (Kolmogorov’s Divergence Theorem). There ezist f € L'(T) such that
Spf diverges almost everywhere.

Proof. (main ideas)

1.

For M, choose {y; }j\zl elements of [—m, 7] which are linearly independent over Q (along
with 7) and that are approximately evenly spaced.

let =M1 Zj-\/:[l d,,, then by writing out the Dirichlet Kernels and using Kronecker’s

theorem, we get for each z, a N = N(z), such that Syu(x) > clog M.

this implies that for all A > 0,e >0, there exist K < oo such that supy g |[Snvu(z)| > A
for all z € T\ E with |E|<e

the same is true with p replaced by a trigonometric polynomial ¢ with ||g|, = 1
(a) this by g=p*Vj
(b) then G(n) =7(n) for |n| < k, therefore Syg = Syu for N < k.

(¢) lglly = Il * Vi |, which is convex combination of translations of Vj, which has
norm bounded by 3 (so we normalize to get ||g|, = 1).

. recursively choose g; such that their fourier transforms have disjoint support and their

partial sums are massive on sets whose measures approach 1. Then take ) 27g;

O

Theorem 2.34 (Extra Fourier Decay of Holder Continuous Functions). If f € A,(T)
with o> 1/2, then f e (1(Z)

Proof.

1.
2.

let fn:‘/Q"*fa letgn:fn_fn—l Sof:fO"'ZTogn
gn = Van x f = f = (Vgnr  f = f), it can be shown that |V, * f - f|. < CN~|f],,

therefore g, is of order 2-7«

. use support of V and Holder: [.],, < C2"/?[g],. < C2'?|ga] 2 < C22|gulq, <

Con/29-na

. therefore || f], <C+CXT 252k this converges if o > 1/2

This is actually sharp.

2this is true for a.e. z if K — oo, therefore by measure theory, we can get this statement
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2.2.5 L? norm convergence

The main ingredient is:
Theorem 2.35 (Reisz-Thorin Theorem). If T : S(X) - (L' + L*)(Y) is a linear

map from simple functions on a measure space X to functions on a measure space Y
such that | T v ;e = Ai for i = 1,2 and p;,q; € [1,00], then for all 6 € [0,1], we have
1-0
Tl cpo 1 < ATAS.
Where py* = 0p;t + (1 - 0)py* and g;' = g7 + (1 -0)g3*
Proof. (idea)

1. for simple functions f = Y a;1g, and g = ¥ bl , define f, = Y |a;|F®)eily, and g, =
> |ok[K @ er 1y, . With L and K affine holomorphic functions defined on 2(z) € [0,1].

2. Let F(2) = (A2 AY")=1 [ T(f.)g.dy. It can be shown that F(6) = (A9AS)-1 [ T(f)gdy

3. We use modified maximum principal to bound F(z) on the boundary of the strip to
get |F(0)| is bounded by what we want.

O
Here is a Hueristic proof to remember the affine transformation

Proof. 1. take f € Lo and g € L% (both with norm 1). In the above, we are basically
considering H(s) = [ T L) . gK()dy for s € [0,1]

2. we want control on the actual f and g, so we would like H(0) = [ T'f-gdy. So we would

like L(#) = K(6) = 1. But at the end of the day we want a bound like |H (6)| < A?Agl_e),
so we should redefine H as H(s) := (AjAL=)=1 [T fEG) . gKG)dy

3. we want endpoint control, when s = 0, we have H(0) = AiszfL(o) - gKOdy. This
suggests using the LP?2 - L% bound:

| [ TFHO . KOy < Ay [ fHO] g<©

%

S8

for these terms on the right to be 1, we simply let L(0) = 22 and K(0) = Z

(SR

S~

4. similarly, we want L(1) = £ and K (1) =
map

g . It then magically works out that the affine

=~

[]

Lemma 2.2 (Modified Maximum Principal for Holomorphic functions). If f is
holomorphic on the strip S = {R(2) € (0,1)}, continuous on S, |f[<1 on S, and |f| < B < oo
on S, then |f|<1 on S

Proof. 1. let f. = f(z)e*
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2. apply usual maximum principal for {Rz € (0,1),7(z) € (-M, M)}, get for large enough
M that f. <1 on this set.

3. send € = 0.
O]

The fact we can uniformly bound F'(z) on the strip is because we have finitely many
terms, and they all only depend on the real part.

2.2.5.1 Interpolation results

The order of proof goes Young’s Inequality — Holder’s inequality — interpolation on LP —
Riesz-Thorin.

First note 0 < (a-0)? = a? +b? - 2ab, so ab < % + % This is a useful bound, and is a baby
version of Young’s inequality:
Theorem 2.36 (Young’s Inequality). If a,b>0, 1< p,q with % + % =1, then
ab bl

Proof. Let t=1/p,so 1/qg=(1-t) and t € (0,1). Then the logarithm right-hand-side of (6) is

In(ta? + (1 -t)b9) > tIn(a?) + (1 - ¢) In(b?) (by concavity). And this is In(a) + In(b) = In(ab).

Take exponential to get result. O
Trick: take log, use concavity.

Theorem 2.37 (Holder’s Inequality ). If f € LP, g € L9, p~t + ¢! = 1, then |fg|, <
171, 19l

Proof. Define f = ||f||;1 f and g similarly. Then |fg| < % + % by Young. Integrate both

sides: Hfg”l < % + % = 1. Multiply to get | fgl, <[ [, lgl, O

Theorem 2.38 (Holder’s Inequality Interpolation). If f € LPn L9, and 6 € (0,1) and
_ g 0 -0
pg' =p ' 0q7 (1-0), then | ], < | fI5 1 £1S"

Proof. Compute | f|?, apply Holder’s inequality to [|f[Pe?|f[re(t=9)||, with conjugate expo-

Po’
. p p 3
nents: }?19 and m. Everything cancels. O]

2.2.5.2 Reisz Theorem

Theorem 2.39 (Reisz Theorem of L? convergence of Fourier Series). Forpe (1,00),
Sxf s f forall felp.

Proof. decompose Sy into sum of compositions of simpler things. Bound those things by
rewriting one as identity plus something. That thing can be bound using complex analysis.

1. suffices to show S, f|, < C'| f], for all trig functions p
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(a) if feLr, let g= Ky f, such that g - f[, <e. Then [Sxf - fl,<[Sng-gl,+
I f =gl +[Sx(g = f)],. First term is zero since g has finite fourier coefficients,
second is small by approximation, third term is what we want.

2. let Exf=emf Pf = flpso, then Sy f = E_yoPoEx—En,10PoE_xn_i. So boundedness
of Sy relies on boundedness of P.

3. let Hf = —~isgn(n)f, then Pf(n)=1(I+iH)f+1f(0). So boundedness of P relies on
boundedness of H

4. By interpolation and duality®, suffices to show bound for p = 2¢q for g e N
5. H is bounded (it suffices to show this for trig polynomials u):

(a) Let f be an analytic function on B;(0) such that f(0) = fyu and f(e) = (u+
iHu)(6)"

(b) fP is also holomorphic, so by mean value property of holomorphic functions
f7(0) = f fP, therefore (losing constants) ([ w)P = [(u+iH)P

(¢) expand and rearrange, get |H|? < C(fu)P+C Y] [uFHPF <O} [ uFHPF

_ _ k -k —
(d) [utHP* < bl [HPF| o = uly [HI,™ <67 uly + 6 | HI,

O

Theorem 2.40 (Wiener’s Tauberian Theorem). Ifa € (Y (Z) and a (which is an element
of CO(T) ) vanishes nowhere, then b:= Fr((a)=t) e (1(Z)

Note that this implies a*b = g, i.e. a is invertible in the Banach Algebra of ¢!(Z) with the
operation of convolution. So a slight strengthening of the theorem is a € ¢1(Z) is invertible

if and only if @ vanishes nowhere. Moreover, this theorem is significant, because all we know
is that (a)~! € C°(T) (if it vanishes nowhere), and all we know is Fp: CO(T) - £2n (>

Proof. Define A = {f €eCOT): fe ﬁl(Z)}. So I need to show that if f € A and vanishes
nowhere, then f~! e A. Define |f], = Hﬂ‘el

1. for f e A, note that f~1 =3 f(0|f|2)"L, since §f € A and A is closed, it suffices to show
that (8|f]?)te A

2. let 0| f|> =1 - g, then if we invert (1 - g) and stay in A, we are done, so it now suffices
to show that if a € ' with ||afqo(y <1, then (1-a)~" € A. (Note § f| is bounded above
and below) ©

3. note (1-a)™' =Yg (a)", take Fourier transform of both sides, get ¥72a® ¢, T want
this to be in ¢!

& H is skew-self-adjoint
Pthis is by f(2) = X0 a,2™ with ag = @(0), a, = u+iH (n) (only finitely man terms are nonzero)
Chere g = a

df‘@j;:f*f*...*f
—_—
j factors
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4. decompose a = o+ 3, where suppa € [-M,M] and |3, <€, then a® = Zi;:o (i)oﬁk *
3eG-H)

(a) Ja®*lp < (2Mk +1)12 [a®*] . < CMY2EY2 |,

(b) 8% <1817

(c) therefore a®|x < T CMY2jY2 || go | 817 (1) € CMY22(| ] o + Bl )7
5. since &[0 + | 8], <1, we get that this sum converges to something in ¢!

]

The idea of the proof is, after nontrivially reducing it to functions with small supremum
norm, is break up the Fourier coefficients into finite support and small norm. Expand the
Nuemann series as convolutions, the finite support terms can be bounded via Holder, while
the small norms can be trivially bounded (|| f * f]x < | £ [1f],2)

2.2.6 Almost Everywhere Convergence

Theorem 2.41 (Carleson’s Theorem). For all f € LP(T), p € (1,00], S,f converges
almost everywhere.

This theorem is very difficult to show. To prove this, it suffices to show that S} f =
sup,<y |Snf ()] is bounded LP — LP. A weaker version of this is the following:

Theorem 2.42 (Kolmogorov-Seliverstov-Plessner). For f € L>(T!), | Sy fll,2 < C | f| 2 Viog N

Proof. 1. for f e L?, define n(x) € {1,..., N} such that S} f(z) = Sn)f(x), and let

2. Now Th(zx) = f; Dy (z — y)h(y)dy with transpose T%g(y) = fr D) (z —y)g(x)dz. Tt
suffices to bound 7" (as it has the same operator norm)

3. ||Tt9||§ = <97TTtg>a and TTtg(:E) = ][11‘ Dn(:r)/\n(a:’)(x - x’)g(x’)dm’

4. |Ttgl; < C Jf Dy (x = a")lg(x)g(x")ldwda’ < |gl, |Dy * gll, < 915 [Dx ], < lgl510g N
O

2.2.7 Examples

It’s always good to have examples of things.

Example 2.2 (Strictly Holder Continuous). If a € (0,1), then f(x) = Yoy e2 @2 € A,
and f ¢ Noye for all e >0. The Fourier coefficients decay at exactly n=2.

Here is a proof of why this function is in A,
1. pick z,y (wlog |x—y| < 1), let N be such that 27N < |z —y| < 27N+1

2. Then f(x) _ f(y) — Ziv 2—ka(€2kiaj _ eriy) + Z;\?+1 Q—ka(€2ki:17 _ e2kiy)
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3. second term is bounded by 2 Y%, 275> < 2C,2-WN+Da < C |z — y[ @

4. first term, use mean value theorem to get bound: Y3 27%2k|x —y| < Cyla — y[2NV(-) <
Colz =yllz =y~ = Calz —y™

2.3 Hardy-Littlewood Maximal Function
Reference: Christ 4.1-4.3, 4.5, 4.7

Weak LP, distribution functions, Hardy-Littlewood maximal function, Marcinkiewicz In-
terpolation theorem, Calderén-Zygumund decomposition, BMO functions, John-Nirenberg
inequality

2.3.1 Weak L? space
Definition 2.13 (Distribution Function). For a measurable function f, define A(a) (| f] >

a)
By Chebyshev’s inequality: Af(a) < a7 |f|7 if f € LP. The natural question is: if
Ar(a) <CPaP, is f e LP? The answer is no, but we call this weak L?:

Definition 2.14 (Weak L7 Space). Define LP>° as all measurable functions f, such that
there exists C' = C(f) > 0 such that Af(a) < a7 PCP. The smallest C is the LP> norm
(although it is not a norm (it fails the triangle inequality).

Example 2.3. [z|%/? € [P N LP. To see this, note A\j(a) = ||z|4 > o = ||z] < a7P/4| =
|By-p1a(0)] = a?|B1(0)]. Therefore Ay(a)a < (|B1(0)|/P)P

A useful identity is:
171 =p [ " As(a)da (™)

2.3.2 Hardy-Littlewood Maximal Function
Definition 2.15 (Hardy-Littlewood Maximal Function). For f € L! (R";C), the

loc

Hardy-Littlewood maximal function is defined M f(x) = sup,, fBT(I) |f(y)|dy

Theorem 2.43 (Boundedness of HLMF). The HLMF is bounded LP — LP (p € (1,00])
and L' — Lt

This is proven via interpolation on the end points.

We require the following lemma:

Theorem 2.44 (Vitali Covering Lemma). Given any open cover of a compact set K,
{Ba}eas there exists a finite subcollection By, . .., B, that are disjoint and K c Uj-, B} where
B? is the same ball but with 3 times the radius.

Proof. The obvious thing works, showing it works is a little work (that I omitted)

1. get a finite subcover, order it from largest measure to smallest measure: By,..., B,
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2. select By, select B; only if it doesn’t intersect the previous selected balls.

3. to show this works, suffices to show that each of the original finite subcollection balls
is contained in the enlarged chosen ones.

m
Step 1. |Mf|pe <C|f]1
Proof. Use inner-regularity and Vitali covering lemma

1. for each a >0 let U, = {M f > a}, by inner regularity, it suffices to control measures of
compact K c U,

2. for each = € K, there exists a ball of radius r = r(x), B,.(z), such that fBr(x) If] > a.
This is a an open cover, reduce to a collection by the Vitali Covering Lemma

3. |K|<3" XV Bi(x) <3na ' X7 [ f11s, <3 a7t | f1
4. Therefore |Uy| < @713 | f|,

Step 2. |[Mf|,~ <C|f|., (thisis trivial)

Step 3. Interpolate:

Theorem 2.45 (Marcinkiewicz Interpolation Theorem). If T' is a sublinear operator
such that for f e LPo 0 LPv, |Tf| e < A fl e (for k = 0,1), then for all 6 € (0,1):
1Tl oo < Ao |f I ne (where pgt = Opgt + (1= 6)pyt (and same for gp).

This is true for py,qp € [1,00], but we require q, > pr and qo # q1. And we define
Looee = [,

Here is a proof of the case when py=¢qp =1, p1 = ¢ = oo:

Proof. repeatedly use (7), first on T'f, control Ary by by splitting into small and big part
(the small part vanishes by L* bound). The big part is controlled by L! bound, use (7) to
control this by Ay, put everything together, use (7) to get to |,

Lolet feLP (pe(1l,00),let f=g+h were g=ga= flifjcasz and h = ho = f1jf5a/2
2. NTfI7=pfy P App(a)da

- Arp(a) = [{[Tf]>a}| = [{[T(h+g)l > a}| < [{ITh] > /2} |+ [{|Tg| > «/2}|. (WLOG
|7 oo, ;e <1 (otherwise divide o by this norm) so |T'g|, < /2, so |{|Tg| > «/2}|=0)

w

4 [{IThl > o2} | = Arn(/2) < (@/2)"H|Th], o, < Cat|A]; (because [T 1, 10 < 00)
5. ”h’Hl = fooo Ah (t)dt. Now Ap, = )‘f(t)lt>a/2 + )‘f(a/2)1t£oc/2
6. | TFI% < c [y artart(fo Ap(f2) + [ Ap(t)dt)der < C [ f]2 (by Fubini).

— 79 —



2.3 Hardy-Littlewood Maximal Function

]

A consequence of weak boundedness is:

Theorem 2.46 (Lebesgue Differentiation Theorem). For f € L} (R"), then for almost
every x € R, lim,_ g+ ][Br(x) |f = f(x)|dy =0

Proof. Decompose into continuous and small L' part. L' part is controlled by Hardy-
Littlewood, use weak boundedness of HL to to bound measure of the bad set

1. by cutting off f, we can assume f e L1, let f=g+h with ge C> and ||h[, <e

2. Fr(%) = £ [ (W) = F(@)|dy < 5,y 19(y) = 9(2)Idy + £ ¢y [R(y) = h(x)|dy, the first
term goes to zero as r — 0% by continuity of g. The second term is bounded by

B()| + Fi oy o)y < 1) + M)
3. foreach § >0, | {limsup,_q Fr.(x) >} | < |{|h| + Mh(z) > 0}| < |{|h| > )2} |+|{Mh > §/2}|.

(a) [{Inl>d/2}[< 3R], <5
(b) [{Mh> 62} 3|l | M| pipne < 5

O

This is a very common proof technique used throughout harmonic analysis. The proof
hinges on proving the maximal operator: f ~ limsup,_ . [ B, () If(y) = f(x)|dy is bounded
L' — L1,
Definition 2.16 (Dyadic Maximal Function). For f € L}, define Mp f(x) = supgsz £, 1f(v)ldy,
QeD

loc?
where D s the set of dyadic intervals in R**
Theorem 2.47 (Dyadic Maximal Function Boundedness). Mp is bounded L' — L1

This actually follows from the fact that Mpf(x) < M f(z) for all 2" (note f < g= A <
Ag). Here is an independent proof.

Proof. easy: establish upper-bound on size of cubes, choose maximal cubes by disjointedness
and containment properties of cubes

1. need to bound ay, (@), fix o, if Mpf(x) > «, then fQ |f| > a flipping things around
we see [Q <ot | ]

2. Since we have an upper bound on the size of the dyadic cubes, for each z € {Mpf > a},
choose (), maximally sized (in containment and size) that satisfies the desired inequal-

1ty
3. then {Mpf > a} = u;Q; with Q; disjoint, therefore Ayr, () = ¥,(Q;] < a™? ZfQj |f| <
a [ fly

aDyadic cubes are of the form ¢2* +2*[0,1)? where c € Z¢ and k € Z (we first pick a coordinate c, scale it
by 2% which can be big or small, then fill in the cube with side lengths 2’“)
Pfor any @ > = dyadic, then fQ |1 <1QI™ [51f] with @ c B, the radius of B is the longest diagonal of the

cube: /22, and therefore has volume |B;(0)[n™/22"F = C,,2"F = C,,|Q)|, so |Q|™ [5|f] < Cn f5 |f| < CL M f
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]

Theorem 2.48 (Pointwise Convolution Bound using HLMF). If f >0 is measurable
on R*, L'> K = k(|z|) > 0 with k(r) nondecreasing, then f * K(z) < | K|, M f(x)

Proof.

L. Let ky(x) = X721 a1y, 1, approximate k(z) (pointwise monotically), and let K, (z) :=
b)) "

2. [+ Ka(0) = [ f(W)En(y)dy = 72105 [iyes f)dy = £ a51Bjm(0)| £, o) f(W)dy
| K, M f(0)

IN

3. by MCT, f % K,(0) > f * K(0). By translation invariance, we get this for all z*

This has the following application to the Dirichlet problem:

{Au(t,a:) =0 t>0
uw(0,2) = f

Under certain assumptions on f, we have a solution given by u(¢,z) = P, * f(z), where P;(x)
is the Poisson kernel

Cdt

Pi(x) = (12 + [a]?) @D

P, satisfies the hypothesis of the previous theorem with |P;[, = 1. Therefore we get:
1. for fe L'+ L, sup,g|u(z,t)| < M f(z) (we can refine this to a bound on cones)

2. (there are some more)

2.3.3 Calderon-Zygmund Decomposition

Theorem 2.49 (Calderon-Zygmund Decomposition). For f € LY(RY), a > 0, there
exists be LY(RY) such that g: f—be L™ with |g||, < 2% and b=y b; where b; are supported
on dyadic cubes Q; with

1 [b;=0
2. [b;], < 2%1aQ;]
3. Z1Q;l <ot £l
(we additionally have |g|, < Cy|f|, and |b], < Cs|f],)

The idea is if we have a distribution of charges, f, then we may remove a threshold of
charge density, g, and are left with dipoles

4I'm not that comfortable with this, but it is easy to replicate the proof for general x
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Proof.

1. Stopping time algorithm to select dyadic cubes
(a) We look for cubes ) such that fQ |f| > «, since f e L', there is an upperbound for
the size of the cubes this works for.

(b) Start with the largest cubes, and select le. such that le_ |f| > a with index j € J;

(c) Consider R? with the chosen cubes removed, and tile the space with cubes of
sidelength half the previous step. Select Q7 such that ng |f| > @ with index j € Jy
J

(d) repeat the previous step to get a collection of dyadic cubes: {Q; 1jediie N}

2. reindex the cubes as Q;, j € N, let b; = 1g, f - 1q, J[Qj f, we get the following properties
of bj

(a) [ bj=0

(b) b5, < 2fQ]- |f|. Let @ be the smallest dyadic cube that contains @;, it wasn’t
selected, so ][QQ- If] € «, so fQ;_ f] < al@j] = a|@j|2¢. Therefore [b;], < 2/@; If| <
2041|Q, |

(¢) since [Qy] < a1 f,, ||, and Q; are disjoint, we get £Qy| < a1,

(d) [b]; < X241 a|Qs] <21 | £,

3. properties of g:

(a) let £ =RI\U;Q;. By the dyadic cube version of the Lebesgue differentiation
theorem, for almost every x € E, |f] = limg-o fQ |f| € «, therefore |f| < «, and
since g = f on E, the same is true on E for g.

(b) for each x € E*, g = f —b; = for some j, so g(z) = ][Qj f,s0]g| < fQj |f] < 93] = 2y

Q]
() lgly <A1+ 1ol < [£], (1 +241)

2.3.4 BMO Functions

Here we discuss a slight generalization of L>
Definition 2.17 (Bounded Mean Oscillation). For f e Ly (R"), let B be the collection

of balls in R", let fg = {5 f, for BcR™, let || f|za0 = SuPpes f5|f — fo]. We say say f is of
bounded mean oscillation (BMO) if | f| g0 < o°-

Remark 2.2. (1) |1 z,,0 =0, so BMO is not a norm, (2) || fl gao <211 flle s0 L c BMO,
(3) | f(x/t)] saro = 1 fll garo which is similar to L*, but not LP.

Theorem 2.50 (Equivalent BMO Norms). An equivalent norm is taking the supremum
of averages over dyadic cubes. Another is:

supinf][ |f - bldx
BeB b JB
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2.3 Hardy-Littlewood Maximal Function

Example 2.4 (BMO is strictly larger than L*). log(|xz|) € BMO \ L*.

Theorem 2.51 (John-Nirenberg Inequality). There exists Cq,6 > 0 such that for all f
with 0 # | f| gao < o0 and all balls B:

][ exp(M) < Cd
5\ flsmo

Corollary 2.1. If f e BMO, then feL .»
Proof.

1. by dividing by | f| 510, We may assume | f| g0 = 1, we will first prove the JNI for
B = Q) for @y a cube. By scaling and translating, we may assume |Qo| = 1 is a dyadic
cube with corner on the origin.

2. We now partition )y via a stopping time construction. Note that ][Qo If = fool <1

(a) Select Q}, j € I; dyadic cubes contained in @ (of any size) such that J[le. |f=fool >
2 for all j and @ ¢ Q; for any i # j.

(b) Next select @3, j € I dyadic cubes contained in some @; (i € I;) such that
ng |f = for| > 2. And continue selecting cubes this way.

3. Claim: Qo = Uns>o(U; Q7 ~ U; Q') modulo null sets.
(a) if x isn’t in this RHS set, then it is in some cube for every generation, that is
(b) for each n, ¥gnegr |QP< T 3 Jon | f = fgun] (by selection rule), this is bounded by
n+1l ! . .
Bl foa lf = Fornil < (U2IQE 1 f L paso < (1/2)|Q2*. By induction 3, |Q7] <
2—TL
(c) we have nested sets whose measures are bounded by 277, therefore the intersection
is null.
4. Now our integral is Y, fuiQy\ujQ;?“ exp(d]f = fq,l). Claim: if z € QP ~ u;Q7*", then
|[f = fqol < (n+1)2¢
(a) (for n=3) Suppose we have Q7 c Q; c Qo, then [f(z) — fo.| < |f(%) - foo| +|fq2 -
Farl +1fqr = faol-
(b) by Lebesgue differentiation theorem, |f(z) - fge| < 2.

(©) Ifaz = forl = lfge f = farl < fgelf = farl < 2% f oy |f = fu] < 2% (where prime
denotes dyadic parent). So our original thing is < 2 + 24+1 4 2d+1 < 3(24+1)

5. then fuiQn\U]_le exp(d]f = faol) < X:1Qi|" exp(d(n + 1)24+1) < 27 exp(d(n + 1)24+1).
This is summable over n if § is small enough

[]

By translating and scaling can assume fg =0 and |f|| gar0 = 1. Then |f(x)[P < 7@ for |f| > 0. Split
up the integral into a big and small part, the big part is integrable by above.
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2.4 Singular Operators

2.4 Singular Operators
Reference: Christ 5.1-5.5

Calderon-Zygmund theorem, homogeneous distributions, almost everywhere existence of

principal-value integrals, almost everywhere differentiablity, singular integral operators on
L*>.

2.4.1 Calderén-Zygmund theorem for Convolution Operators

The goal is to prove LP boundedness of convolution with a certain class of functions. These
functions will generalize K () = z;x;]z|(*2). The Kernels that satisfy the conditions of the
following theorem will be called CZ kernels. K (x) as previously defined is a CZ kernel.

Theorem 2.52 (Calderon-Zygmund Theorem for Convolution Operators). For
d>1, let K:R*—C be s.t. (1) |z|]*"*|VK|eL> (2) KeL>* (3) KeCY R4\ {0})

Then for all pe (1,00), f € L' L |+ K|, <Gyl £l
Lemma 2.3. Let Tf = K % f, it suffices to show that T : L' — LY* is bounded.
Proof. Given this, then:
1. if feL?n L', then |f* K|,=C Hf}?HQ <C ”}?Hm Ifl,, so T: L? - L? is bounded.
2. By Marcinkiewicz interpolation, T is bounded LP — LP for all p € (1,2]

3. for p>2, [Tf], = supyy 1 [(Tf,g)| with g =p'. But (Tf,g) = (f,T*g) with T*g = K xg
with K (z) = K (-z). This satisfies all properties, so [(T'f, )| < C 1£1, gl

Il
Lemma 2.4. T : L! - LY 45 bounded.

Proof. Idea: use CZ decomp, the bounded part is trivial. For dipoles, need to control terms
away from support, this is done by exploiting dipole condition: away from a dipole, we don’t
really see anything We want S := [{|T'f| > a}| < Ca™t|f],. Fix a>0.

1. let f = g+ b by the CZ decomposition with parameter a, then S < [{|Tg|> a/2}]|+
|{|Tb] > a/2}|. The first term is bounded by Ca2 | Tg|3 < Ca?||g|3 < Ca?|g|l, g, <
Ca2a|fl,®

2. bj are supported on @), let 5 be the double cube containing (), then | {:U ceU; Q5 : |Tb| > a/2} | <
2@ <C Qi < Cat | f|l;-

3. [{z e R"\U; Q; : [TV > /2} < Car' T, | T e

dusing T: L? » L? is bounded, |g|., < Ca, |g], <C|f],
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2.4 Singular Operators

4. for each j, for x ¢ Q%, Tb;(x) = [Qj bi(y)K(z-y)dy = fQj(K(x —y) - K(z-9))b;j(y)dy
(with g the center of Q7). Then by MVT and hypothesis, |Th;(z)| < C’fQj ly - ||z -
gl bgldy < CUQ7) b5, | — gl

5. integrate to get HTijLl(Rn\Q;) <CUQN) sl Jouq,) rtrdtdr = C by,

6. with this, then [{z e R* \ U, Q5+ T > a2} < Cat 2 |bi], < Ca ' | f],

O
2.4.2 Calderon-Zygmund Theorem
The following theorems are motivated by proving the following:
Theorem 2.53 (Second Derivative Controlled by Laplacian). H@%J_Iif ‘Lp <C|Afll»

for all pe(1,00).

1. by density it suffices to prove this for f € §. By the Fourier transform, can let T'f = K« f

with K = with m(§) = %, it suffices to show that 7' is bounded LP - Lr?

2. To apply the Calderon-Zygmund theorem, it suffices to show that m is homogeneous
of degree zero and C' everywhere, except possibly the origin.

To prove (2), I will prove a more general result.
Theorem 2.54 (Fourier Transform Homogeneous Distribution Smooth Away From
Origin). If ¢ € §'(R?) is homogeneous of degree a, and is in C*°(R4\ {0}), then @ is in
C*>(RI~ {0}) and is homogeneous of degree —a — d.

Proof. 1. easy to see ¥ is homogeneous of this degree. Therefore it suffices to show

P(&) € C*™ near [¢| = 1.

2. fix k € N, construct ¢ = ¢4 € C5°(R") radially symmetric supported in B;(0), with
P(€) # 0 for [§| = 1 (and a moment condition that will be defined below). Since
1 e C*, it suffices to show that ¥ e C*

3. for this, suffices to show ()" (1 % ) € L! (note ¢ x ¢ € C=), for this suffices to
understand for large =. Let R > 0 and consider |z| = R:

vep@)= [ woney= [ w(R@-)e(R) Rl

Br-1(u)

_ RoRd f s YRG0 p()dv = R fly |

L Pw)e(u= g
where u = /R

4. Taylor expand ¢ about u to get ¢ = Py(u)+O(RN-1). The moment condition requires
[an=0foralln=0,...,N, so we get ) x p < CRR™N-L.

“because TAf = K x Af = FH(mléP ) = F U4 =02, f
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2.4 Singular Operators

5. Therefore (z)* ) » o = O(Jz[o~N-1-k)  let N be large so that this exponent < —d
[

We bounded the norm of a convolution operator. If K is our convolution, and our oper-
ator is A, then we can write A: Cg® — D' by: (Au,v) = [[u(z)v(y)K (z - y)da:dy We wish
to generalize boundedness of A to more general A, defined in a similar way.

An operator A: C§® — D’ has kernel K (z,y) if (Au,v) = [ u(z)v(y) K (z,y)dzdy. Let’s
consider the following kernels:

Definition 2.18 (Calderon-Zygmund Kernel). K is called o CZ kernel if (1) K ¢
COR? xRN A) > C (2) [K(z,y)| < Clo =yl (3) for all ly - y/| < glo -yl [K(z,y) -
K(z,y)+ K (y,z) - K(y', 2)| < Cly = y'[’lw = y|~"* for some 6 € (0,1]

Although due to the singularities, we may only define A as above, if suppv nsuppu =@
Example 2.5. If ke C°(R%~ {0}) is homogeneous of degree —d, then K(x,y) = k(z -vy) is
a CZ kernel.

Remark 2.3. A sufficient condition for condition (3) is A, K(x,y) = O(Jx —y|~41)

Theorem 2.55 (Calderon-Zygmund Theorem). If A is an operator with associated CZ
kernel K that is bounded on L9 for some q, then T extends to a bounded operator LP — LP
for all pe (1,00)

Definition 2.19 (Principal Value). If k € CO(RI~ {0}) is homogeneous of degree —d, and
Jga1 k(x)do(x) = 0, then there exists a distribution pvk defined as:

(pvk f) = lim [ k(o) f(@)da
This comes up naturally when looking at 2= in R. Note z=! ¢ L] , so it cannot naturally

be considered a distribution.

Theorem 2.56 (Fourier Transform bijection of Homogeneous Degree Zero Distri-
butions). The fourier transform is a continuous bijection between homogeneous distributions

of order zero that are smooth away from the origin and homogeneous distributions of degree
—d that can be written as pv(k) + cdg where k € C° (R4~ {0})

Proof.
1. let ¢ € D'(R™)nC>=(R™~0) homogeneous of degree 0. Write ¢ = h+c with ¢ a constant,
and [g,.1h=0
2. then §=h+2 €= c(21)"dy and k€ D'(R™) n C*=(R™) homogencous of degree —d.
3. claim: fsn-l h=0
4. then h agrees with puh everywhere except possibly the origin. The (distributional)

difference of the two is homogeneous of degree —d, supported at the origin, and is
therefore a delta distribution.

]

Example 2.6. |z|~¢ can not be expressed as a homogeneous distribution (ie no homogeneous
distribution agrees with |z|=¢ outside {x = 0}.
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2.4.3 Almost Everywhere Existence Of Convolution

Theorem 2.57 (Almost Everywhere Existence of Principal Value Integrals). For
keSS nC=(R*"~{0}) (homogeneous of degree —d, mean zero on spheres), pv(k) * f(x) exists
almost everywhere for f e LP (pe[l,00))

Things are a little confusing. So here is what we know:

1.

4.

We consider the operator T : L2 - L2 by T'f = k * f. Note k € L by Theorem 2.54, so
this is well defined.

. We then showed that |Tf|,, <C|f], for all pe (1,00) and feS

Therefore there is a unique bounded extension of T": LP — LP_ but it is now unclear how
to compute T'f for arbitrary f (other than approximating f by Schwartz functions)

The theorem says that T'f(x) = pv(k) * f(z) almost everywhere.

Proof. 1. decompose f =g +b with g€ Cg° and b e L? with |[b] , <6

2.

. with this then |T*h| < ||T™|

then pu(k) * f = lim ¢ /|

lyl>¢
converges by continuity of g

(g(z—y) +b(x—-y))k(y)dy. The first term in the integral

second term is bounded by sup,., | fly\>e b(x—y)k(y)dy|:=T*h

claim: T is bounded LP — LP for p € (1, 00)

p—=p 0

The proof boils down to proving T* : LP - LP is bounded.

1.

. Claim: if h e L! is radial, nonincreasing, nonnegative, then g * h < c¢Mg for g€ L

let feCy, ke(x) = k(x)Ljgpe, then frko = fake+ fokxp.— frhkxo.=(f*k)*p.+
f* (k.—Fk = p.) where @, is a usual approximation of identity

(frE) 2. <CM(f k) <CM(Tf)

. Claim: (k. —kx*¢.) < Ce™@ (5_1|y|)_d_1

(a) expand integral

1
loc

(a) approximate h below by simple functions supported on annuli, apply dominated
convergence theorem.

. therefore T*(z) < C(M(Tf)(x) + M f(x)), take LP norms of both sides, use that M

and T are bounded LP — P
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2.4.4 Almost Everywhere Differentiability

The basic idea is that Lipschitz functions are differentiable almost everywhere. A more
general theorem will be proven about LY(R?) with 1 > d/p (so we are in the Morrey’s
inequality domain).

Definition 2.20 ( L/ (R?)). For f € LP, the weak gradient is a distribution Vf := g : R4 - R9
such that for all p € C§°(RY)

1o = [ otw) olards

We say fe L if VfelLr
Theorem 2.58 (Almost Everywhere Differentiability of LY). If f € LY with p > d, then
f s almost everywhere differentiable.

The steps of the proof are outlined here:

1. Pick f e L} with compact support, then for almost every = € R¢:
=Y
@) =ea [ St @)y
|z -yl

2. claim: if g € LP(R% C?) and f(z) = [ o - 9(y)dy with @ satisfying: (1) g(x) =0, (2)

z—yl¢

x is a Lebesgue point of ¢g* (3) pvvz(m%d) * g(x) == Tg(x) exists, then:
fQz+h) = f(x)=h-Tg(x)+o(|h])

3. now let f e L}, then get the good x. And let g(z') = Vf(2') - Vf(x)n(a’) with ne Cg°
with n(z) = 1.

An alternate proof relies on the following:

Lemma 2.5 (Morrey’s Estimate). If v e WP with p >n, then:

o(z) —v(y)| < CriTe ”DU”LP(B(x,ZT))

Now let x be a Lebesgue point of Du, then let v(y) = u(y) —u(x) - Du(x) - (y — ), then
we can easily get:

[u(z) = u(y) = Du(z) - (z = y)| < Cr | Du = Dol 1y g, (2) = 0(7)

2.4.5 Singular Integral Operators on L*

Theorem 2.59 (CZ Operators on L*). If T is a CZ operator in R?, then |Tf| 5,0 <
C\fl for all f e L> that vanish outside a bounded set.

%is in the full measure set given by the Lebesgue differentiation theorem
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Proof. The goal is to, for each ball B, to find b such that f,|f -b|dx is bounded (uniformly).
It can be reduced to showing this for a ball centered at the origin, let that be B(0,r)

1. Let f = fo+ foo with fo = f1g, (0)-

2. let b= _[|y‘>4r K(0,y)f(y)dy, then for x € B,.(0):

The(@)-H<CUfl [ el dy<Cllur [~ 2ol

yl>

3. Then:

frr-vis frra-vs f sl

it suffices to bound the second term:

[B T foldz < | B2 |T fol L2y < CIBIY2 [ foll L2y < 11l | BIC
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3 Probability

3.1 Basic Notions
Reference: Durret 1.4 - 1.7

Measure theory, 7—\ theorem, random variables, inequalities, change of variables, notions
of convergence of random variables

3.1.1 Measure Theory

Definition 3.1 (Measure Space). A measure space is a triple X, M, m. X is the space.
M is the o—algebra of measurable sets, and m is the measure.

Definition 3.2 (o-algebra). A o—algebra M on X is a collection of sets such that:
1. 3, X e M
2. M s closed under countable unions and compliments

that definition is redundant, basically any countable collection of set operations is allowed

Definition 3.3 (Non-negative real measure). m is a non-negative real measure on X
with o—algebra M if m : M — Ry such that:

1. m(z) =0
2. if {Ai},on € M are disjoint, then m(U A;) = X m(A;)

again, there are lots of ways to define this. Just think it generalizes m([a,b]) =b-a.

Definition 3.4 (Probability Space). A probability space is a measure space P, M,m such
that m(P) =1

Definition 3.5 (Random variable). A random variable is a measurable function X : P —
R. That is X-1(B) € M for all open sets Borel sets B € R.

Note, it is the measurable with respect to Borel sets, not just open sets. Recall the Borel
o—algebra is the o—algebra generated by open sets. So it contains closed sets and countable
intersections of open sets.

Basically everything is measurable and therefore a random variable, but here are useful
things:

Theorem 3.1 (Measurable on Generating Set). If {X-1(A)} is measurable for all A € A
and A generates M, then X is measurable with respect to M

Theorem 3.2 (Combinations of Random Variables). Since compositions of measur-
able functions are measurable, combinations (not rigorous) of random variables are random
variables (like X7 + X5).

Definition 3.6 (Almost-sure convergence). Random variables X,, converge to X almost
surely, if Pw: X, (w) > X}) =1
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3.1 Basic Notions

Definition 3.7 (Convergence in Probability). X,, converges in probability to X if for
alle >0, P(|X,-X|>¢)—>0
Definition 3.8 (Convergence in L?). X,, converges in LP to X if E[|X — X,[P] -0

Theorem 3.3 (Relations of Notions of Convergence).
L X, 55X =X, 5 X (use dominated convergence theorem)
v P : :
2. X, — X = X,, = X (use Markov’s inequality)

3 X, 5 X = X, 25X

Proposition 3.1 (Push-forward via random variable). A random variable X induces
a probability measure via the pushforward of the probability measure: u(A) = P(X € A) for
AeB(R)

Definition 3.9 (Cumulative Distribution Function (CDF) ). The CDF of a random
variable X is defined as F(x) = P(X € (—00,x])
I believe it is convention to be (—oo, z], so this needs to be memorized.?

Theorem 3.4 (Characterizations of CDF). A function F satisfies (1) non-decreasing
(2) F(-o0) =0, F(oo) =1 (8) is right continuous if and only if it is a CDF for a random
variable X .

Proof. (=) Let Q =(0,1), M the Borel o—algebra, m the Lebesgue measure. Then define
X(w) =sup{y: F(y) <w}. idea: if F € C° then X(w) = F~'(w) works easily, otherwise
consider X s.t. P(X =-1) = P(X =1) = 1/2, think what F is, then reconstruct to get the
correct inequality. O

3.1.2 Inequalities

Definition 3.10 (Expected Value). For a random variable X, define E[X]= [ XdP
Theorem 3.5 (Jensen’s Inequality). If ¢ is convex, then p(E[X]) < E[¢p(X)]

A way to remember this is that the absolute value is convex, and we know that | [ f| < [ |f]
Theorem 3.6 (Markov’s Inequality). If X >0, then cP(X >¢) <E[X]

Proof. ¢P(X 2¢) = [ clxs.dP < [ XdP =E[X] O

To remember, write P(X > ¢) as an integral, and see that if ¢ = 1, we can bound this
integral by X, so we just need to scale.

Theorem 3.7 (Chebyshev’s Inequality). If X > 0 and ¢ > 0 is measurable, and vy =
min {p(y) :y € A} with A a Borel set, then taP(X € A) <E[X1xea]

(same proof as Markov).
Corollary 3.1. P(|X|> k) < k2E[| X|?]

*mnemonic: Hungarians use F'(z) = P(X < x)...maybe because they don’t believe in equality (that’s a
joke, please don’t attack me)
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3.2 Law of Large Numbers

Theorem 3.8 (Fatou). E[liminf X,,] <liminf E[ X, ]
Think 1[,%,”1]

Theorem 3.9 (Change of Variables). If f € L', then E[f(X)] = [ f(z)du(xz) where X
has probability density p.

3.2 Law of Large Numbers
Reference: Durret 1.4-1.7

Independence, weak law of large numbers, Borel-Cantelli lemmas, strong law of large
numbers, Kolmogorov 0-1 law, Kolmogorov maximal inequality

3.2.1 Independence
Definition 3.11 (Independence).

1. (sets) A, B € R are independent if P(AB) = P(A)P(B).

2. (random variables) X andY are independent if P(X € A,Y € B) = P(X € A)P(Y € B)
for all A,BeR.

3. (o—algebras) M and N are independent if P(AB) = P(A)P(B) for all A € M and
BeN. (Finite collections of these objects are also independent by a similar definition)

Note that X and Y are independent if and only if o(X) and o(Y") are independent.®

Definition 3.12 (7-system). A w—system is a collection of sets that is closed under finite
ntersection.

Definition 3.13 (\-system). A A—system is a collection of sets L of 2 such that (1) Qe L,
(2) if Ac B are in L, then BN Ae L, (3) if Aje L A;c Aiyq, then Upey An € £

Theorem 3.10 (7 — \ theorem). If P is a w-system and L is a \-system such that P c L,
then o(P) c L

Theorem 3.11 (Criterion for Independence). Xy, ..., X, are independent random vari-
ables if and only if P(X1<xy,... X, <x,) =1 P(X; <x;) for all z; e R

Proof. (for X,Y random variables, backwards direction)

1. Let A={X<z:2eR}, B={Y <y:yeR}. These sets are closed under finite inter-
section, and are therefore m-systems.

2. Let P={AeR:P(AB)=P(A)P(B) ¥ B € B}, this is a A-system.
3. Ac P, so by the -\ theorem, o(A) c P
4. But 0(A) = 0(X), therefore X and B are independent

5. Repeat this argument to get o(X) and ¢(Y’) independent.

2To see this, note that o(X) = {X‘lB :Be 'R}
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]

This proof can be generalized to give:

Theorem 3.12 (Independent Collections of Sets). If A; is a finite collection of inde-
pendent families that are closed under finite intersection. Then o(A;) are independent.

Corollary 3.2 (Independent Array of Sets). If F,; are independent sets with 1 <i<n
and 1< j<m;, then G; = o(U; Fi;) are independent.

Proof. Let M; = {nA;: A; e F; ;}. Each M, are a m—system and independent, therefore o (M)
are independent. Now G; ¢ M;, so 0(G) c o(M;). And so these are independent. O

Theorem 3.13 (Expectation of Function of Two Independent Random Variables).
Let X,Y be two independent random variables with distribution p and v, and let h € L'(R?),

then E[R(X,Y)] = [[ h(z,y)dp(z)dv(y).
Proof.

1. change of variables: E[h(X,Y)] = [ h(z,y)d\ with A the unique measure on R? that
agrees with the induced measure of X xY on rectangles.

2. MAxB)=P(X €AY e¢B)=P(X e A)P(Y € B) = ux (A) iy ( B).

3. use Fubini to get [ h(z,y)d) = [[ h(z,y)dux(x)duy (y)

3.2.2 Weak law of large numbers

Theorem 3.14 (L? LLN). If X; are uncorrelated with mean p and variance uniformly
bounded, then n=1S, := Y1 X; Lz, 1

Proof. E[n1S,] = = p, so E[|n"1S, - puf?] = Var(n1S,) = 5 ¥ Var(X;) <€ -0 O

Theorem 3.15 ( L' LLN). If X; € L' are iid random variables, then S, L, E[X]

Theorem 3.16 (Weak Law Of Large Numbers). If X; are i.i.d. L' random variables,
then 15, - E[X;] in probability.

Prool_‘. Let XE = Xilix,|<n, and p,, = ]E[)_(n]. By dominated convergence theorem, p,, — pu.
Let S, = Y7 Xk, it therefore suffices to show that P(|n=1S,, — u,| > ) — 0 for all e.

1. P(n7'S, = jin| > €) < P(S, # S,) + P(In71S, = | > €)

2. first term goes to zero: P(S, # S,) < X1 P(IX,| > n) =nP(|X1|>n) <E[|X1|1jx,5n] —
0 by DCT.

3. Second term bounded by Chebyshev:
e?n*Var(S,) <en? ) E[X;]=¢n"" fn 2uP(|X41| > y)dy
1 0
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4. let g(y)+2yP(|X1| > y), then 0 < g < 2y and goes to zero (by same argument as above).
Then compute fon g(y)dy via change of variables, it will go to zero by the dominated
convergence theorem.

]

3.2.3 Borel-Cantelli Lemmas

Definition 3.14 (Liminf and Limsup of Events). limsup A, = lim;_c MNnsj Umsn Am-
liminf A, = lim;_ e Unsm Nimsn-

Then w € limsup A, if w is in infinitely many A,, (w is in A4, i.0.). And w € liminf A,, if
w is in all but finitely many A,,.
Theorem 3.17 (1st Borel-Cantelli Theorem). If Y, P(A,) < oo, then P(A, i.0.) =0

Proof. Let N =%, 14,. Then E[N] < ¥, P(A,) < co (monotone convergence theorem). If
P(A, i.0) >0, then E[N]> N(w:we€ A, i.0)P(A, i.0) =-P(A, i.0) = oo, O

Theorem 3.18 (LP convergence implies subsequence converging a.s.). If X, =, X,
then X, - X almost surely.

Proof. 1. X, — X in probability. We therefore have a subsequence such that P(|.X,, -X| >
1/k) < 27k,

2. Let Ay = P(|Xn, - X|>1/k), so P(A i.0) = 0.

3. Relabel subsequence X,,. Let By = {|X,, - X| < 1/k for all but finite n}. So P(By) =1
for all k.

4. P(X,—>X)=P(NB)=1
0

The more general theorem is that is P(|X,, — X| > ¢) is summable for all , then X,, > X
almost surely.

Theorem 3.19 (2nd Borel-Cantellil Theorem). If A, are independent non-summable
events, then P(A, i.0) =1

Proof. After playing around with limit continuity, it suffices to show that (for all n) lim,;,_..c P(Nj2, A%) =
0. P(NEAL) =TI(1 - P(Ap)) = exp(Tlog(1 - P(Ax))) < exp(- Y P(Ax)) = 0 (where we use
log(l1-z) < -x) O

The trick is to use logarithm properties, and an inequality that I always forget how useful
it is.
Theorem 3.20 (Distributional Formula for L? norm). If Y >0 is a random variable
and p> 0, then E[Y?] = [~ py? ' P(Y > y)dy
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3.2 Law of Large Numbers

Proof. Trick: write YP = fOY pyPtdy

Y oo
E[Y?] = fQ YPdP(w) = fQ fo PPt dyd P(w) = fQ fo Lysypy” dpd P(w)
:[ /prp_lly>ydP(Q)dp:/ pyp_lP(Y>y)dy
0 0
0

Theorem 3.21 (SSN for infinite mean iid random variables). If X; are iid random
variables with E[|X;|] = oo, then %Sn almost surely doesn’t converge to something finite.

Proof. Really clever.

oo o n+l 0 n+1
ZP(|Xn|2n)=Z/ P(|X1|2n)d9022f P(1X)| > «)da
n=0 n=0 7 IT=n n=0Jr=n

- [ P> 2)do = E[1X]] -

therefore by the 2nd Borel-Cantelli theorem, P(|X,,| > n i.0.) = 1, therefore the tails of S, /n
cannot converge. O

Theorem 3.22 (Strong Law of Large Numbers). Let X; be iid L' random variables,
then 2= - E[X;] a.s

Proof.

1. Let Y, = X, 1jx,|<n and T, = 37Y;. By a Borel-Cantelli argument, it suffices to show
T./n — p (T, and S, agree after finite terms).

2. let k, = |a™|, it suffice to show that Ty, [k, — p for all a > 1

(a) letting n,, be such that k,, <m <k, .1, kT’“m <Im < k—l implies 1y < Im < a0

Nm +1 m Nm

3. want to show Y770 P(|Ty, ~E[T%, ]| > €kn) < oo for all &, this would imply Ty — n[sz]I 50

almost surely, which gives TfL" - [

4. P(ITi, - E[T}, ]| > ekn) < 2252 = e2k,2 7 Var(Y;)
5. switch limits, want to show finiteness of Y;°_ Var(Yn) Yok, sm kn2-

n

-2 -2
6. for each m, ¥,k sm K <m0

_ —2logy, m _
(a’> Zn kp>m kn2 < CZn:nzlogam an = cal,a—z =cm™2
7. Y Var(Yr)k2 < oo

(a) Var(Yy) <E[Y?] = [;° 2yP(|Ys| > y)dy, remember what X} is: [~ 2yP(| X5 1 x, <k >
y)dy = [, ysk(y)2yP(le| > y)dy
(b) Fubini on sum is: [, P(|X1|>y) Yro1 1y (y)2yk—2dy
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3.2 Law of Large Numbers

(c) fix y, Yroq Ly<k2yk™2 $ 2y fyoo k=2dx = %y = 2 details will give 4
(d) sum is bounded by 2 [; P(|X1| > y)dy = 2E[| X1|] < o0
O

Theorem 3.23 (Kolmogorov 0-1 Law). If X; are independent random variables, and
A€Njs10(Umsj Xm), then P(A) € {0,1}

We can interpret these events (called tail events) as events which don’t depend on any
finite collection of Xj.

Proof. (this is a good easy exercise in using the m — A theorem (or corollary).
1. Aeo(Xy,...X) and B € 0(Xpi1, Xgso,. .. ) are independent

(a) If Beo(Xyi1,...,Xksj), then apply Corollary 3.2 to see A and B are independent.

(b) By (a), o(Xy,..., X)) and Ujs 0(Xpe1, ... Xisj) are independent, and are m-
systems, therefore, o(U;jsr 0(Xps1, - - - Xpsj)) = 0(Xps1,... ) and 0( Xy, ..., X}) are
independent.

2. Aeo(Xy,...Xg) and B €T are independent (because B € 0(Xjq1,...)).

3. Upo(Xy,...,X;) and T are independent by (2) and are w—systems. Therefore the
o—algebras are. Since 7 c o(Uro(Xy,...,Xy)), we are done.

]

Theorem 3.24 (Kolmogorov Maximal Inequality). Given X; independent mean zero
random variables with finite variance, and S, = Y7 X;, then P(max)c<n |Sk| > ) <272V ar(S,)

Proof. Idea: split the event into disjoint sets, bound the variance below by the second
moment, split into integrals, use independence of partial sums to get rid on integral

1. let Ay = P(|Sk| >z and |S,| < x for n < k), these are disjoint over k

2. since Var(S,) =E[S2] -E[S,.]? > E[S2]:

Var(sn)zfsgdpzzf Sgdpzzf (S, = Sy + Sy )2dP
T J Ak 1 YAk

3. this gives three integrals. (S, — Sg)? > 0, so we throw it away. For the other use
indepedence: (S, —Sk) L Skla, and E[S,, - Sk] = 0.

4. The third integral is:

> f SpladP >y, f 2°14,dP =Y x*P(Ay) = xQP({nBX |Sk| > x)
1 1 1 sksn
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3.3 Central Limit Theorem

3.3 Central Limit Theorem
Reference: Durret 2.2 - 2.4

Convergence in distribution, Helly’s selection theorem, characteristic functions, Levy’s con-
tinuity theorem, central limit theorem, Lindenberg-Feller Theorem

Definition 3.15 (Weak Convergence of Distributions). Probability measure j, con-
verge weakly to probability measure p if [ fdu, - [ fdu for all fe COn L> (this is written
= ).

There are several equivalent statements of weak convergence in measure as outlined by
the following;:

Theorem 3.25 (Portmanteau Theorem). If u,,p are Borel probability measures then
the following are equivalent:

L = p

2. [ fun— [ fu for all feLipn L*

3. lim p,(B) = u(B) for all measurable B such that u(0B) =0
4. limsup pu, (F) < u(F) for all closed measurable F.

Definition 3.16 (Convergence in Distribution of Random Variables). Random vari-
ables X,, converge in distribution to X if E[g(X,)] = E[g(X)] for all g € L> n C?

Proposition 3.2 (Random Variable vs Measure weak convergence). X, = X if and
only if p, = p.

To prove this, the following helps:

Lemma 3.1 (measure vs CDF convergence). If X,,, X are random variables with mea-
sure fin, o and CDF F, F then p, = w if and only if F,(z) - F(x) for all x where F is
continuous.

Proof. = F,(x) = p,((=00,z]) = u((—00,x]) = F(x) because u({z}) =0.
<. Want to show if G is open, then liminf 1, (G) > u(G).
1. G is a disjoint union of open intervals U(a;, b;)
2. for each interval get x;,y;, continuity points of F' such that a; < y; < b;
3. liminf p, (G) 2 XV pn (i, yi) = X1 Fu(yi) = F(21).

4. n — oo, get RHS as u(U"(z4,y:)). Send x;,y; to a;,b;. Then send m — oo.
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3.3 Central Limit Theorem

Weak convergence is the weakest form of convergence (almost sure convergence or con-
vergence in probability implies weak convergence).

If F,, = F, then using the inversion formula for CDF's, we can construct Y,,,Y with the
CDF F, and F respectively such that Y, ==> Y. This is very useful.

Theorem 3.26 (Continuous mapping theorem). If X,, = X and g is a measurable
function such that P(X € Dy) =0 (where D, is the set of discontinuities of g), then g(X,) =

9(X)
Proof.
1. Let Y,, = Y a.s. have the same distribution as X,,, X

2. Let f be continuous and bounded, then E[f(g(X,))] =E[f(g9(Y»))] (b/c same distri-
bution) - E[f(g(Y"))] (because it is continuous outside a measure zero set so we get
almost sure convergence and by DCT we get this)

3. this is E[ f(g(X))] because they are the same distribution.
O

Theorem 3.27 (Helly’s Selection Theorem). Given a sequence of cumulative distribu-
tion functions, there exists a subsequence the converges to a nondecreasing right-continuous
function F(x) at the continuity points of F'. This convergence is called vague convergence.

Proof. 1. Enumerate rationals, pick subsequences that converge on rational points to a
sequence of nondecreasing values, call the result F'(z) (defined only for z € Q).

2. Define F(z) =inf{F(q):q>z qeQ}
[l

Note that the result may not be a cumulative distribution function. Consider F}, = 1,5, —
O or F’I'L = 1x$7n —> 1

Definition 3.17 (Tight CDFs). CDFs F; are tight if for all € >0, there exists M = M(e):
limsup(1 - Fi(M.) + Fi(-M.)) <e

equivalently, the associated measure p,, are such that for all € >0, there exists K., compact,
such that 1 - u,(K.) <e for alln

Theorem 3.28 (Vague Convergence to CDF). CDFs F,, are tight if and only if every
vague subsequential limit is a CDF.

Proof. Easy proof. Both directions involve taking continuity points of F' s and ¢, and know

that a nondecreasing function taking values between 0 and 1, that is right-continuous is a
cdf if and only if lim, . 1 - F(x) + F/(-z) < € for all €. O

Proposition 3.3 (Way to check tightness). If X, are random variables,, ¢ >0 is goes
to infinity as |x| - oo, and E[p(X,)] < C, then the CDFs of X,, are tight.

Proof. Apply Chebyshev: P(|X,|> M) < Ele(Xn)] o

infy, 57 ()
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3.3 Central Limit Theorem

3.3.1 Characteristic Functions

Definition 3.18 (Characteristic Functions). For a random variable X, define the char-
acteristic function o(t) = E[eX]

(This is the inverse Fourier transform of the probability density function)

Example 3.1 (Characteristic Function of Normal Distribution). The standard nor-
mal distribution has density f(x) = (2m)"12e2*2. The characteristic function is computed
as:

€_t2/2 oo
V2T J-o

Theorem 3.29 (Characteristic Function Measure Inversion Formula). If p is a
probability measure with characteristic function o(t), then for all a <b

T it
e R dy = e 2

o(t) = (2m)71/? f e~ vt gy —

o dm [ (e ) (1)dt = () + S )

21 T—oo J_T 1t

Proof. expand integral with Fubini, use Dirichlet Kernel knowledge

1. using Fubini, the LHS is (without constant and limit):

T git(z—a) eit(z-b) dtd
- x
/IR[T it g (@)

2. since cos(t)/t is odd, each term in the integral is:

/‘°° sin(t(x —a))

. dt = wsgn(z - a)

(via contour integration)

3. then thinking about things, if x € (a,b), the integrand is 27, if x =a or x = b, it is 7
(sgn(0) = 0), and otherwise it is zero. So we are done.

O

Here is some intuition: if X has a continuous PDF f(x) with CDF F(x), then ¢(t) =
F(t) = F'(t) = itF. Therefore [ e itoo(t)/(it)dt = [ e t=F(t)dt = F(x)
Theorem 3.30 (Characteristic Function PDF Inversion Formula). If ¢ € L! is a
characteristic function, then p has bounded continuous density with pdf:

f@)= o [ eeed

Proof.

—zta_e—ztb —zta_e—ztb

1. since ¢ € LY, then | [ “——=—¢(t)dt| < (b-a)|¢],, since =
integral converges absolutely if |b— a| < oo.

= [Peitdt (so the
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3.3 Central Limit Theorem

2. letting a = b from the above formula, we see there cannot be singular points of .

3. plz,z+h) =5 [ fx“h e~ Wo(t)dydt = fx“h o= [ e Mp(t)dtdy (this is the definition
of a pdf).

]

Theorem 3.31 (Levy’s Continuity Theorem). If u, are probability measures with char-
acteristic functions @, then

1. if pn = p then @, (t) = (t) pointwise.
2. if pn(t) = p(t) pointwise and ¢ is continuous at 0, then u, are tight and p, = u

Proof. The first statement is trivial: E[e?X»] - E[e?X ] by the dominated convergence the-
orem (where will let X,, » X pointwise having induced measures pi,, p.

For the second:
1. f_i 1 —-et=dt = 2(u - W), therefore ! f_t;f(l - et Y, (dr) = 2_[(1 - W)pn(dx)

2. LHSisu™ [* [ 1-p,(t)du, RHS is bounded below by 2f|x|>2u,1(1—®)un(x) > iy (2] >
2u~t)

3. since (0) = 1 and ¢ is continuous at 0, u™' [* (1 - ¢(t))dt — 0, since @, (t) - o(t),
then the LHS goes to zero as u - 0 and n — oo. Therefore p,, are tight.

4. get subsequence p,, = u (by tightness) with characteristic function ¢ (by (1)). If w,
didn’t converge to pu, then for every subsequence it doesn’t converge, but by the above,
we can find a subsequence that does converge.

]

The second statement isn’t straightforward. It suffices to show pu, are tight. The key
inequality to show is f, o) (L= en(t))dt > sin(|z] > 2e71) (I wonder if there is a Harmonic
analysis interpretation? Something involving distribution functions.).

Theorem 3.32 (Taylor Expansion of Characteristic Function). If X € L2, then
ox (1) = 1+aE[X] - EE[X2] + o(12).

Proof.
1. use calculus: e* =1 +itx —it?2?/2 + R(t,x) with |R(t,z)| < min(%,t%ﬂ)
2. s0 o(t) =E[eX] = [ e p(dr) =1+ #E[X] - it?E[X?]/2 + [ R(t,z)p(dz)

3. lim;ot2 [ R(t,z) = 0 because it is dominated by z? € L' and converges pointwise
because tx3/3 — 0 almost everywhere.

]
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Theorem 3.33 (Central Limit Theorem). If X; are iid with E[X] = u, Var(X) =o0%¢
(0,00), and S, = X1 X;, then So’j;\/:if‘ = N(0,1)

Proof.
1. WLOG, by shifting =0

2. the characteristic function is: ]E[exp(itg%)] = (E[?\)/%])” = @X(%ﬁ)”

3. by Theorem 3.32, this is (1+0 - % +o(n 1)) =(1+t2/(2n) + o(n~1))"

4. this converges, for each fixed t, to e**/2 as n — oo *.

(S48

. by Levy’s Continuity Theorem (3.31) the original random variable converges in distri-
bution to the standard normal.

O

Theorem 3.34 (Lindeberg-Feller Theorem). Let X,,,,, (m=1,....,n,n=1,...,00) be a
triangular array of mean zero independent random variables with variance o2, such that:

n,m?’

: n
1. liMyee Ypey Oy = 0

2

2. 1imy, o0 Yoot E[| X ml?1ix,, 2] = 0 for all € >0
then Sy, = Y1 Xpm = N(0,02)
Proof.

1. set @nm(t) = E[e?Xnm], so @g, (t) = [Thm-1 Pnm(t), we need to show for each fixed ¢,
| T} pnm(t) = 6715202/2| -0

2 2
2. Claim: e~t*7*/2 = lim,,_, o, [Th-1(1- : 05””)

2 2
(b) the sum is —t?¢*/2, the remainder goes to zero: oy, ,, = E[ X7 1x,  HE[X?  1ix, el <

2,2 1252
a) take log, taylor expand: Y7 _ log(1 - £Zm) = yn  omm 4 (5t
m=1 m=1 n,m

n,m n
e2+E[X2 . 1)x, .15e]- The sum of the second term over m goes to zero, so all those
terms must go to zero, therefore sup,, 02 ,, - 0 as n - oo

207 n 207
3. Claim: | 17 @n,m(t) - H%:l(l - 2 )| <X |90n,m(t) - (1 - tT)|

(a) for n > 1, the terms in the products are bounded in modulus by 1, then induct
using the algebra:

|2’122 - w1w2| = |2122 — 21Wo + Z1 W9 — w1w2| < |21||22 — U}2| + |w2||z1 — w1| < |Z2 - U)2| + |Zl — W1

2 2
t Onm

4. Claim Y7 @ (1) - (1 - Zmy)) 2255

#nontrivially since the remainder term has complex values
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t?o

(a) |§0n,m(t)_(1_ 2nm) < CE[|t3Xn,m|3/\t2|Xn,m|2] < CE[|t3Xn,m|31|Xn,m|gs]
(b) the first term is bounded by c[tPeE[| X, m[*1ix, < e] < 02, clt]Pe

+CE[|t2Xn7m|21|X

n,m\>s]

(c) taking the sum to infinity (noting the second term goes to zero) gives: e[t|*co?,
e — 0 gives result

2 2
t On,m

5. finally, let A, (%) :Zl—gfn:l(l - —5). From (3) and (4), |g05n(2t)2—An(t)| - 0 for all .
By (2) A,.(t) > e "7 /2 so by the triangle inequality |S,, — e /2) - 0

[]
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